Frontier applications of electrostatic accelerators

Ke-Xin Liu, Yu-Gang Wang, Tie-Shuan Fan, Guo-Hui Zhang, Jia-Er Chen

PDF(902 KB)
PDF(902 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (5) : 564-576. DOI: 10.1007/s11467-013-0373-1
REVIEW ARTICLE
REVIEW ARTICLE

Frontier applications of electrostatic accelerators

Author information +
History +

Abstract

Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

Keywords

electrostatic accelerator / application / neutron / radiation biology / material science / accelerator mass spectrometry (AMS)

Cite this article

Download citation ▾
Ke-Xin Liu, Yu-Gang Wang, Tie-Shuan Fan, Guo-Hui Zhang, Jia-Er Chen. Frontier applications of electrostatic accelerators. Front. Phys., 2013, 8(5): 564‒576 https://doi.org/10.1007/s11467-013-0373-1

References

[1]
J. E. Chen and Y. X. Zhang, Design of 4.5 MV electrostatic accelerator, Proceeding of the first Japan-China Joint Symposium on Particle Accelerators and their Applications in Nuclear Research and Industry, University of Tokyo, Japan, 1980: 19
[2]
J. E. Chen, Y. X. Zhang, J. Y. Wang, , Progress and application of the 4.5 MV electrostatic accelerator, Proceeding of the fifth Japan-China Joint Symposium on Particle Accelerators and their Applications in Nuclear Research and Industry, University of Osaka, Japan,1993: 174
[3]
L. H. Gong, , The 4.5 MV single stage electrostatic accelerator, Modern Scientific Instruments, 1995 (2): 9
[4]
J. Q. Lu and S. W. Quan, Beam pulsing system for the 4.5 MV electrostatic accelerator, Nucl. Instrum. Methods A, 1995, 346: 31
[5]
J. Y. Wang, L. H. Gong, X. J. Yang, , Operation and improvement of the 4.5 MV electrostatic accelerator at Peking University, Atomic Science and Technology, 2008, 42(Suppl.): 239
[6]
A. E. Litherland and K. Allen, Oxford, Beijing and AMS, Nucl. Instrum. Methods B, 2000, 172(1-4): 721
CrossRef ADS Google scholar
[7]
J. E. Chen, Z. Y. Guo, S. Q. Yan, , Status of the tandem accelerator mass spectrometry at Peking University, Nucl. Instrum. Methods B, 1990, 52: 306
CrossRef ADS Google scholar
[8]
J. X. Yu, R. X.Li, L. H. Gong, , The operation and improvements of the EN tandem at Peking University, Nucl. Technol., 1992, 15(6): 335
[9]
J. E. Chen, Z. Y. Guo, S. Q. Yan, R. Li, M. Xiao, K. Li, H. Liu, K. Liu, J. Wang, B. Li, X. Lu, S. Yuan, T. Chen, S. Gao, S. Zheng, C. Chen, and Y. Liu, Accelerator mass spectrometry at Peking University: Experiments and progress, Nucl. Instrum. Methods B, 1994, 92(1-4): 47
CrossRef ADS Google scholar
[10]
L. H. Gong, Y. X. Shen, X. J. Yang, , The control and monitor system of EN tandem at Peking University, Nucl. Technol., 1993, 16(9): 561
[11]
K. X. Liu, Z. Y. Guo, X. Y. Lu, , Improvements of PKUAMS for precition 14C analysis of the project of Xia-Shang-Zhou chronology, Nucl. Instrum. Methods B, 2000, 172: 70
CrossRef ADS Google scholar
[12]
K. X. Liu, Z. Zhu, L. H. Gong, , A new recirculation gas stripper for EN tandem, Nucl. Technol., 2007, 30(12): 1
[13]
G. Zhang, J. Chen, G. Tang, , Measurement of differential and angle-integrated cross sections of the 6Li(n,t)4He reaction in the MeV neutron energy range, Nucl. Instrum. Methods A, 2006, 566(2): 615
CrossRef ADS Google scholar
[14]
G. Zhang, L. Guo, R. Cao, J. Zhang, and J. Chen, Crosssection measurement for the 10B(n, α)7Li reaction at 4.0 and 5.0 MeV, Appl. Radiat. Isot., 2008, 66(10): 1427
CrossRef ADS Google scholar
[15]
G. H. Zhang, X. Liu, J. M. Liu, Z. H. Xue, H. Wu, and J. X. Chen, Measurement of cross sections for the 10B(n, α)7Li reaction at 4.0 and 5.0 MeV using asymmetrical twin gridded ionization chamber, Chin. Phys. Lett., 2011, 28(8): 082801
CrossRef ADS Google scholar
[16]
X. Zhang, Z. Chen, Y. Chen, J. Yuan, G. Tang, G. Zhang, J. Chen, Y. Gledenov, G.Khuukhenkhuu, and M. Sedysheva, Dispersion relations for (n,n), (n,p), and (n, α) reactions on 39K and40Ca, Phys. Rev. C, 2000, 61(5): 054607
CrossRef ADS Google scholar
[17]
G. Zhang, J. Zhang, R. Cao, , Measurement of differential cross section for the 64Zn(n, α)61Ni reaction at 2.54, 4.00 and 5.50 MeV, Nucl. Sci. Eng., 2008, 160(1): 123
[18]
G. Zhang, R. Cao, J. Chen, , Differential cross-section measurement for the 64Zn(n, α)61Ni reaction at 5.03 and 5.95 MeV, Nucl. Sci. Eng., 2007, 156(1): 115
[19]
G. Tang, G. H. Zhang, J. X. Chen, , Tests of the GIC and Measurement of Angular Distribution and Energy Spectra for 58Ni(n, p)58Co at 4.1 MeV, INDC(CPR)-043/L, 1997, 18: 1
[20]
G. Y. Tang, J. H. Fan, J. X. Chen, . Measurement of Angular Distribution at 6.0-7.0 MeV for 58Ni(n, α)55Fe and 54Fe(n, α)51Cr, INDC(CPR)-042/L, 1997, 17: 1
[21]
G. Y. Tang, D. C. Qu, W. G. Zhong, , Cross section measurements for 40Ca(n, α)37Ar reaction, Chinese J. Nucl. Phys., 1993, 15(3): 239
[22]
G. H. Zhang, H. Wu, J. G. Zhang, J. M. Liu, J. X. Chen,Yu. M. Gledenov, M. V. Sedysheva, G. Khuukhenkhuu, and P. J. Szalanski, Cross-section measurement for the 67Zn(n, α)64Ni reaction at 6.0MeV, Eur. Phys. J. A, 2010, 43(1): 1
CrossRef ADS Google scholar
[23]
G. H. Zhang,Yu. M. Gledenov, G. Khuukhenkhuu, M. V. Sedysheva, P. J. Szalanski, J. Liu, H. Wu, X. Liu, J. Chen, and V. A. Stolupin, Cross sections of the 67Zn(n, α)64Ni reaction at 4.0, 5.0, and 6.0 MeV, Phys. Rev. C, 2010, 82(5): 054619
CrossRef ADS Google scholar
[24]
G. Zhang, J. Zhang, L. Guo, H. Wu, J. Chen, G. Tang, Y. M. Gledenov, M. V. Sedysheva, G. Khuukhenkhuu, and P. J. Szalanski, Measurement of cross sections for the 147Sm(n, α)144Nd reaction at 5.0 and 6.0 MeV, Appl. Radiat. Isot., 2009, 67(1): 46
CrossRef ADS Google scholar
[25]
Yu. M. Gledenov, M. V. Sedysheva, V. A. Stolupin, G H. Zhang, J. G. Zhang, H. Wu, J. Liu, J. Chen, G. Khuukhenkhuu, P. E. Koehler, and P. J. Szalanski, Cross sections of the 147Nd(n, α)140Ce and 147Sm(n, α)144Nd reactions in the MeV neutron energy region, Phys. Rev. C, 2009, 80(4): 044602
CrossRef ADS Google scholar
[26]
G. H. Zhang, H. Wu, J. G. Zhang, J. M. Liu, Y. X. Yin, J. X. Chen, Y. M. Gledenov, M. V.Sedysheva, G. Khuukhenkhuu, P. E. Koehler, and P. J. Szalanski, Cross section measurement for the 95Mo(n, α)92Zr reaction at 4.0, 5.0 and 6.0 MeV, Appl. Radiat. Isot., 2010, 68(1): 180
CrossRef ADS Google scholar
[27]
Yu. M. Gledenov, G. H. Zhang, G. Khuukhenkhuu, M. V. Sedysheva, P. J. Szalanski, P. E. Koehler, J. M. Liu, H. Wu, X. Liu, and J. X. Chen, Cross-section measurement and analysis for the 149Sm(n, α)146Nd reaction at 6.0 MeV, Phys. Rev. C, 2010, 82(1): 014601
CrossRef ADS Google scholar
[28]
G. H. Zhang, Y. M. Gledenov, G. Khuukhenkhuu, M. V. Sedysheva, P. J. Szalanski, P. E.Koehler, Y. N. Voronov, J. M. Liu, X. Liu, J. Han, and J. Chen, 149Sm(n, α)146Nd cross sections in the MeV region, Phys. Rev. Lett., 2011, 107(25): 252502
CrossRef ADS Google scholar
[29]
P. Zhu, Z. Yuan, J. Chen, Z. Liu, G. Zhang, Z. Shi, and H. Lu, Measurement of neutron capture cross sections for 141Pr from 0.5 to 1.6 MeV, Appl. Radiat. Isot., 2007, 65(12): 1314
CrossRef ADS Google scholar
[30]
J. X. Chen, Z. M. Shi, G. Y. Tang, , Measurement of 64Zn(n, γ)65Zn cross sections, Chinese J. Nucl. Phys.s, 1995, 17(4): 342 (J)
[31]
J. X. Chen, Z. M. Shi, G. Y.Tang, , Measurement of neutron capture cross section for 180Hf, Chinese J. Nucl. Phys., 1997, 19(2): 110
[32]
J. X. Chen, Z. M. Shi, G. Y. Tang, , Measurement of fast-neutron capture cross sections for 159Tb and 169Tm, Nucl. Sci. Tech., 1998, 9(3): 138
[33]
G. H. Zhang, Z. M. Shi, G. Y. Tang, , Interference of the low-energy neutrons on activation cross section measurement of the 186W(n, γ)187Wreaction, Nucl. Sci. Eng., 2001, 137(1): 107 (J)
[34]
G. H. Zhang, Z. M.Shi, G. Y. Tang, , Measurement of fast-neutron capture cross sections for 75As, Nucl. Sci. Tech., 2001, 12(3): 161
[35]
Q. L. Ni, X.G. Wang, C. Zhang, and T. S. Fan, A full-f calculation of spontaneous toroidal rotation in H-mode plasma, Plasma Phys. Contr. Fusion, 2012, 53(8)
[36]
Q. L. Ni, T. S. Fan, X. Zhang, C. Zhang, Q. L. Ren, and C. D. Hu, Predictive calculation of neutral beam heating plasmas in EAST tokamak by NUBEAM code for certain parameter ranges, Plasma Science Tech., 2010, 12(6): 661
CrossRef ADS Google scholar
[37]
Z. J. Chen, T. S. Fan, C. Zhang, C. D. Hu, and X. G. Wang, Simulation of EAST off-axis neutral beam heating and current drive, Fusion Eng. Design, 2012, 87: 325
CrossRef ADS Google scholar
[38]
Z. Chen, M. Nocente, M. Tardocchi, T. Fan, and G. Gorini, Simulation of neutron emission spectra from neutral beamheated plasmas in the EAST tokamak, Nucl. Fusion, 2013, 53(6): 063023
CrossRef ADS Google scholar
[39]
X. F. Xie, X. Zhang, X. Yuan, T. S. Fan, J. X. Chen, and X. Q. Li, Investigation of the influence of a ninner gas bubble on the response of a liquid scintillation detectorto g-rays and neutrons, Nucl. Instrum. Methods A, 2013, 721: 10
CrossRef ADS Google scholar
[40]
X. Zhang, X. Yuan, X. F. Xie, Z. J. Chen, X. Y. Peng, J. X. Chen, G. H. Zhang, X. Q. Li, T. S. Fan, G. Q. Zhong, L. Q. Hu, and B. N. Wan, A compact stilbene crystal neutron spectrometer for EAST D-D plasma neutron diagnostics, Rev. Sci. Instrum., 2013, 84(3): 033506
CrossRef ADS Google scholar
[41]
X. F. Xie, X. Zhang, X. Yuan, J. X. Chen, X. Q.Li, G. H. Zhang, T. S. Fan, G. L. Yuan, J. W. Yang, and Q. W. Yang, Digital discrimination of neutrons and gamma-rays in organic scintillation detectors using moment analysis, Rev. Sci. Instrum., 2012, 83(9): 093507
CrossRef ADS Google scholar
[42]
X. Zhang, X.Yuan, X. F. Xie, Z. J. Chen, J. X. Chen, T. S. Fan, G. L. Yuan, J. W. Yang, and Q. Q. Yang, A digital delay-line-shaping methods for pulse shape discrimination in stilbene neutron detector and application to fusion neutron measurement at HL-2A tokamak, Nucl. Instrum. Methods A, 2012, 687: 7
CrossRef ADS Google scholar
[43]
X. Zhang, X. Yuan, X. Xie, T. Fan, J. Chen, and X. Li, The design and optimization of a neutron time-of-flight spectrometer with double scintillators for neutron diagnostics on EAST, Plasma Science Tech., 2012, 14(7): 675
CrossRef ADS Google scholar
[44]
X. Xie, X. Yuan, X. Zhang, T. Fan, J. Chen, and X. Li, Calibration and unfolding of the pulse height spectra of liquid scintillator-based neutron detectors using photon sources, Plasma Science Tech., 2012, 14(6): 553
CrossRef ADS Google scholar
[45]
X. Yuan, X. Zhang, X. Xie, G. Gorini, Z. Chen, X. Peng, J. Chen, G. Zhang, T. Fan, G. Zhong, L. Hu, and B. N. Wan, Neutron energy spectrum measurements with a compact liquid scintillation detector on EAST, J. Instrumentation, 2013, 8: P07016
CrossRef ADS Google scholar
[46]
H. Qin, J. Xue, F. He, J. Lai, W. Zhang, J. Wang, S. Yan, W. Zhao, H. Gu, and Y. Wang, Biological effect of the seeds of Arabidopsis thaliana irradiated by MeV protons, Radiation Effects and Defects in Solids: Incorporating Plasma Science and Plasma Technology, 2006, 160(3-4): 131
[47]
H. L. Qin, Y. G. Wang, J. M. Xue, Q. Miao, L. Ma, T. Mei, W. M. Zhang, W. Guo, J. Y. Wang, and H. Y. Gu, Biological effects of protons targeted to different ranges in Arabidopsis seeds, Int. J. Radiat. Biol., 2007, 83(5): 301
CrossRef ADS Google scholar
[48]
G. Yang, T. Mei, H. Yuan, W. Zhang, L. Chen, J. Xue, L. Wu, and Y. Wang, Bystander/abscopal effects induced in intact Arabidopsis seeds by low-energy heavy-ion radiation, Radiat. Res., 2008, 170(3): 372
CrossRef ADS Google scholar
[49]
T. Mei, G. Yang, Y. Quan, W. Wang, W. Zhang, J. Xue, L. Wu, H. Gu, G. Schettino, and Y. Wang, Oxidative metabolism involved in non-targeted effects induced by proton radiation in intact Arabidopsis seeds, J. Radiat. Res., 2011, 52(2): 159
CrossRef ADS Google scholar
[50]
J. Wu, Q. Fu, Y. Quan, W. Wang, T. Mei, J. Li, G. Yang, X. Ren, J. Xue, and Y. Wang, Repair rates of DNA doublestrand breaks under different doses of proton and g-ray irradiation, Nucl. Instrum. Methods B, 2012, 276: 1
CrossRef ADS Google scholar
[51]
G. Yang, Y. Quan, W. Wang, Q. Fu, J. Wu, T. Mei, J. Li, Y. Tang, C. Luo, Q. Ouyang, S. Chen, L. Wu, T. K. Hei, and Y. Wang, Dynamic equilibrium between cancer stem cells and non-stem cancer cells in human SW620 and MCF-7 cancer cell populations, Br. J. Cancer, 2012, 106(9): 1512
CrossRef ADS Google scholar
[52]
Q. Fu, Y. Quan, W. Wang, T. Mei, J. Wu, J. Li, G. Yang, X. Ren, J. Xue, and Y. Wang, Response of cancer stem-like cells and non-stem cancer cells to proton and g-ray irradiation, Nucl. Instrum. Methods B, 2012, 286: 346
CrossRef ADS Google scholar
[53]
Y. Quan, W. Wang, Q. Fu, T. Mei, J. Wu, J. Li, G. Yang, and Y. Wang, Accumulation efficiency of cancer stem-like cells post g-ray and proton irradiation, Nucl. Instrum. Methods B, 2012, 286: 341
CrossRef ADS Google scholar
[54]
W. Zhang, J. Li, L. Cao, Y. Wang, W. Guo, K. Liu, and J. Xue, Fabrication of nanoporous silicon dioxide/silicon nitride membranes using etched ion track technique, Nucl. Instrum. Methods B, 2008, 266(12-13): 3166
CrossRef ADS Google scholar
[55]
W. Zhang, Y. Wang, J. Li, M. Xu, H. Ji, Q. Ouyang, J. Xu, and Y. Zhang, Controllable shrinking and shaping of silicon nitride nanopores under electron irradiation, Appl. Phys. Lett., 2007, 90(16): 163102
CrossRef ADS Google scholar
[56]
Y. Zhang, X. Qian, X. Wang, S. Liu, C. Wang, T. Li, Z. Zhao, and D. Lu, Mechanical and Raman spectroscopic studies of multi-ion-beam irradiated 12, 18Cr-oxide dispersion strengthened steels, Nucl. Instrum. Methods B, 2013, 297: 35
CrossRef ADS Google scholar
[57]
X. Wang, Y. Zhang, S. Liu, C. Wang, and Z. Zhao, Optical and structural properties of 6H-SiC irradiated by Si3t n Het coimplantation, Nucl. Instrum. Methods B, 2012, 289: 47
CrossRef ADS Google scholar
[58]
Z. Guo, K. Liu, X. Lu, , The use of AMS radiocarbon dating for Xia-Shang-Zhou chronology, Nucl. Instr. Meth. B, 2004, 223-224: 168
[59]
Z. Guo, K. Liu, S. Yuan, , AMS radiocarbon dating of Fengxi site in Shaanxi, China, Radiocarbon, 2005, 47(2): 221
[60]
K. Liu, B. Han, Z. Guo, , AMS Radiocarbon dating of bone samples from Xinzhai site in China, Radiocarbon, 2005, 47(1): 221
[61]
K. X. Liu, H. L. Gao, L. P. Zhou, F. Xu, S. X. Peng, J. L. Yuan, and Z. Y. Guo, AMS mearsurements of 10Be concentration in Chinese loess using PKUAMS, Nucl. Instr. Meth. B, 2004, 223-224: 168
CrossRef ADS Google scholar
[62]
X. S. Li, F. Wang, J. Y. Shi, , Genotoxicity study on nicotine and nicotine-derived nrator mass spectrometry, Radiocarbon, 1996, 38(2): 347
[63]
Y. Cheng, H. L. Li, H. F. Wang, H. F. Sun, Y. F. Liu, S. X. Peng, K. X. Liu, and Z. Y. Guo, Inhibition of nicotine-DNA adduct formation in mice by six dietary constituents, Food Chem. Toxicol., 2003, 41(7): 1045
CrossRef ADS Google scholar
[64]
Q. Xie, Y. Liu, H. F. Sun, , Inhibition of acrylamide toxicity in mice by three dietary constituents, Toxicol. Lett., 2006, 163: 101
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(902 KB)

Accesses

Citations

Detail

Sections
Recommended

/