Recent progress in subatomic particle detection technology

Zhi-Huan Li, Jian-Ling Lou, Qi-Te Li, Yu-Cheng Ge, Zhe-Wei Yin, Yan-Lin Ye

PDF(455 KB)
PDF(455 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (5) : 548-554. DOI: 10.1007/s11467-013-0371-3
REVIEW ARTICLE
REVIEW ARTICLE

Recent progress in subatomic particle detection technology

Author information +
History +

Abstract

Particle detection technologies have been largely advanced in our laboratory over the past decade. A neutron sphere was built to detect the decay neutron emitted from the implanted unstable nucleus, whereas a multi-neutron correlation spectrometer was implemented to detect the forward moving neutrons resulting from breakup reactions. Charged particle telescopes are now equipped with double sided Silicon strip detectors which have excellent energy and position resolutions. Large size gas chambers, such as resistive plate chambers, have been developed in order to achieve high performances related to timing or position measurements. The advances of these technologies contribute substantially to such large science project, as LHC-CMS, and to the experiments with the radioactive nucleus beams.

Keywords

subatomic particles / detection / nuclear physics

Cite this article

Download citation ▾
Zhi-Huan Li, Jian-Ling Lou, Qi-Te Li, Yu-Cheng Ge, Zhe-Wei Yin, Yan-Lin Ye. Recent progress in subatomic particle detection technology. Front. Phys., 2013, 8(5): 548‒554 https://doi.org/10.1007/s11467-013-0371-3

References

[1]
CMS Collaboration, A new boson with a mass of 125 GeV observed with the CMS experiment at the large hadron collider, Science, 2012, 338(6114): 1569
CrossRef ADS Google scholar
[2]
CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B, 2012, 716(1): 30
CrossRef ADS Google scholar
[3]
Z. X. Cao and Y. L. Ye, Study of the structure of unstable nuclei through the reaction experiments, Sci. China-Phys. Mech. Astron., 2011, 54: s1
[4]
Y. L. Ye and L. H. Lv, Some key problems related to radioactive ion beam physics, Plasma Science and Technology, 2012, 14(5): 360
CrossRef ADS Google scholar
[5]
J. L. Lou, Z. H. Li, Y. L. Ye, H. Hua, Q. J. Faisal, D. Jiang, X. Li, S. Zhang, T. Zheng, Y. Ge, Z. Kong, Y. Song, L. Lv, C. Li, F. Lu, F. Fan, Z. Li, Z. Cao, L. Ma, Q. Li, and J. Xiao, Performances of a delayed neutron detection array at Peking University, Nucl. Instrum. Methods A, 2009, 606(3): 645
CrossRef ADS Google scholar
[6]
H. B. You, Z. H. Yang, Y. L. Ye, Z. H. Li, , Construction and calibration of the multi-neutron correlation spectrometer at Peking University, Nucl. Instrum. Methods A, 2013, 728: 47
CrossRef ADS Google scholar
[7]
M. Pfutzner, M. Karny, L. V. Grigorenko, and K. Riisager, Radioactive decays at limits of nuclear stability, Rev. Mod. Phys., 2012, 84(2): 567
CrossRef ADS Google scholar
[8]
M. J. Borge, Beta-delayed particle emission, Phys. Scr., 2013, T152: 014013
CrossRef ADS Google scholar
[9]
Z. X. Cao, Y. L. Ye, J. Xiao, L. H. Lv, , Recoil proton tagged knockout reaction for 8He, Phys. Lett. B, 2012, 707(1): 46
CrossRef ADS Google scholar
[10]
Y. L. Ye, J. Q. Faisal, J. L. Lou, J. L. GE, Y. C. Lv, L. H. Cao, Z. X. Xiao, J. Li, Q. T. Chen, and T. Y. Yang, Study on structure of unstable nuclei through breakup and knockout reactions at intermediate and high energies, Nucl. Phys. Rev., 2010, 27: 390
[11]
H. B. You, Y. S. Song, J. Xiao, and Y. L. Ye, Study of neutron cross talk rejection based on testing experiment and simulation, Plasma Science and Technology, 2012, 14(6): 473
CrossRef ADS Google scholar
[12]
B. Davina, R.T. de Souza, R. Yanez, Y. Larochelle, , ASSA: A large area silicon strip array for isotopic identification of charged particles, Nucl. Instrum. Methods A, 2001, 473(3): 302
CrossRef ADS Google scholar
[13]
M. S. Wallacea, M. A. Famianoa, M. J. van Goethem, A. M. Rogers, , The high resolution array (HiRA) for rare isotope beam experiments, Nucl. Instrum. Methods A, 2007, 583: 302
CrossRef ADS Google scholar
[14]
Y. Blumenfeld, F. Auger,J. E. Sauvestre, F. Mar’echal, , MUST: A silicon strip detector array for radioactive beam experiments, Nucl. Instrum. Methods A, 1999, 421(3): 471
CrossRef ADS Google scholar
[15]
T. Davinson, W. Bradeld-Smith, S. Cherubini, et al., Louvain-Edinburgh Detector Array (LEDA): A silicon detector array for use with radioactive nuclear beams, Nucl. Instrum. Methods A, 2000, 454(2-3): 350
CrossRef ADS Google scholar
[16]
L. Feng, Y. C. Ge, F. Y. Fan, R. Qiao, F. Lu, Y. S. Song, T. Zheng, and Y. L. Ye, Top pair production in the littlest Higgs model with T-parity, Chinese Phys. C, 2009, 33(1): 50
CrossRef ADS Google scholar
[17]
J. Ying, Y. L. Ye, Y. Ban, H. T. Liu, Z. M. Zhu, Z. Y. Zhu, T. Chen, J. G. Ma, and S. J. Qian, Study of an avalanchemode resistive plate chamber, J. Phys. G, 2000, 26(8): 1291
CrossRef ADS Google scholar
[18]
J. Ying, Y. L. Ye, Y. Ban, H. T. Liu, Z. M. Zhu, Z. Y. Zhu, T. Chen, J. G. Ma, and S. J. Qian, Beam test results of a resistive plate chamber made of Chinese bakelites, Nucl. Instrum. Methods A, 2001, 459(3): 513
CrossRef ADS Google scholar
[19]
Q. T. Li, Y. L. Ye, C. Wen, W. Ji,Y. Song, R. Ma, C. Zhou, Y. Ge, and H. Liu, Study of spatial resolution properties of a glass RPC, Nucl. Instrum. Methods A, 2012, 663(1): 22
CrossRef ADS Google scholar
[20]
Y. L. Ye, Z. Y. Di, Z. H. Li, Q. J. Wang, T. Zheng, T. Chen, D. X. Jiang, Y. C. Ge, D. Y. Pang, and X. Q. Li, Study and application of low pressure multi-wire proportional chambers, Nucl. Instrum. Methods A, 2003, 515(3): 718
CrossRef ADS Google scholar
[21]
L. Y. Han, Q. T. Li, Q. Faisal, Y. C. Ge, H. T. Liu, and Y. L. Ye, Study of a multi-wire proportional chamber with a cathode strip and delay-line readout, Chinese Phys. C, 2009, 33(5): 364
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(455 KB)

Accesses

Citations

Detail

Sections
Recommended

/