Low frequency Whistler waves excited in fast magnetic reconnection processes

Xiao-Gang Wang (王晓钢), Qi-Bin Luan (栾其斌)

PDF(181 KB)
PDF(181 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (5) : 585-589. DOI: 10.1007/s11467-013-0369-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Low frequency Whistler waves excited in fast magnetic reconnection processes

Author information +
History +

Abstract

Whistler waves generated in fast magnetic reconnection processes of collisionless high beta plasmas are reviewed in experiments and satellite observations, as well as in theory and simulation, and further studied in the two-fluid theory. It is found that low frequency whistler waves can be excited in the ion inertial range of the reconnection region. The wave is found right-handed polarized with a quadrupolar out-of-plane magnetic perturbation, in accord with satellite observations in the geomagnetosphere.

Keywords

Whistler waves / mode conversion / Hall MHD / magnetic reconnection

Cite this article

Download citation ▾
Xiao-Gang Wang (王晓钢), Qi-Bin Luan (栾其斌). Low frequency Whistler waves excited in fast magnetic reconnection processes. Front. Phys., 2013, 8(5): 585‒589 https://doi.org/10.1007/s11467-013-0369-x

References

[1]
D. A. Gurnett, L. A. Frank, and R. P. Lepping, Plasma waves in the distant magnetotail, J. Geophys. Res., 1976, 81(34): 6059
CrossRef ADS Google scholar
[2]
J. M. Urrutia and R. L. Stenzel, Nonlinear penetration of whistler pulses into collisional plasmas via conductivity modifications, Phys. Rev. Lett., 1991, 67(14): 1867
CrossRef ADS Google scholar
[3]
R. L. Stenzel, J. M. Urrutia, and C. L. Rousculp, Pulsed currents carried by whistlers (Part I): Excitation by magnetic antennas, Phys. Fluids B, 1993, 5(2): 325
CrossRef ADS Google scholar
[4]
R. L. Stenzel, J. M. Urrutia, and C. L. Rousculp, Pulsed currents carried by whistlers (Part IV): Electric fields and radiation excited by an electrode, Phys. Plasmas, 1995, 2(4): 1114
CrossRef ADS Google scholar
[5]
J. M. Urrutia, R. L. Stenzel, and C. L. Rousculp, Pulsed currents carried by whistlers (Part II): Excitation by biased electrodes, Phys. Plasmas, 1994, 1(5): 1432
CrossRef ADS Google scholar
[6]
J. M. Urrutia, R. L. Stenzel, and C. L. Rousculp, Pulsed currents carried by whistlers (Part III): Magnetic fields and currents excited by an electrode, Phys. Plasmas, 1995, 2(4): 1100
CrossRef ADS Google scholar
[7]
C. L. Rousculp, R. L. Stenzel, and J. M. Urrutia, Pulsed currents carried by whistlers (Part V): Detailed new results of magnetic antenna excitation, Phys. Plasmas, 1995, 2(11): 4083
CrossRef ADS Google scholar
[8]
Z. Zhu, P. Song, J. F. Drake, C. T. Russell, R. R. Anderson, D. A. Gurnett, K. W. Ogilvie, and R. J. Fitzenreiter, The relationship between ELF-VHF waves and magnetic shear at the dayside magnetopause, Geophys. Res. Lett., 1996, 23(7): 773
CrossRef ADS Google scholar
[9]
X. H. Deng and H. Matsumoto, Rapid magnetic reconnection in the Earth’s magnetosphere mediated by Whistler waves, Nature, 2001, 410(6828): 557
CrossRef ADS Google scholar
[10]
W. M. Farrell, M. D. Desch, M. L. Kaiser, and K. Goetz, The dominance of electron plasma waves near a reconnection X-line region, Geophys. Res. Lett., 2002, 29(19): 1902
CrossRef ADS Google scholar
[11]
X. H. Wei, J. B. Cao, G. C. Zhou, O. Santolik, H. Reme, I. Dandouras, N. Cornilleau-Wehrlin, E. Lucek, C. M. Carr, and A. Fazakerley, Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth’s magnetotail, J. Geophys. Res., 2007, 112(A10): A10225
CrossRef ADS Google scholar
[12]
S. Y. Huang, M. Zhou, F. Sahraoui, X. H. Deng, Y. Pang, Z. G. Yuan, Q. Wei, J. F. Wang, and X. M. Zhou, Wave properties in the magnetic reconnection diffusion region with high B: Application of the k-filtering method to Cluster multispacecraft data, J. Geophys. Res., 2010, 115(A12): A12211
CrossRef ADS Google scholar
[13]
M. A. Shay and J. F. Drake, The role of electron dissipation on the rate of collisionless magnetic reconnection, Geophys. Res. Lett., 1998, 25(20): 3759
CrossRef ADS Google scholar
[14]
M. A. Shay, J. F. Drake, B. N. Rogers, and R. E. Denton, The scaling of collisionless, magnetic reconnection for large systems, Geophys. Res. Lett., 1999, 26(14): 2163
CrossRef ADS Google scholar
[15]
M. A. Shay, J. F. Drake, B. N. Rogers, and R. E. Denton, Alfvénic collisionless magnetic reconnection and the Hall term, J. Geophys. Res., 2001, 106(A3): A3759
CrossRef ADS Google scholar
[16]
X. G. Wang, A. Bhattacharjee, and Z. W. Ma, Collisionless reconnection: Effects of Hall current and electron pressure gradient, J. Geophys. Res., 2000, 105(A12): A27633
CrossRef ADS Google scholar
[17]
B. N. Rogers, R. E. Denton, J. F. Drake, and M. A. Shay, Role of dispersive waves in collisionless magnetic reconnection, Phys. Rev. Lett., 2001, 87(19): 195004
CrossRef ADS Google scholar
[18]
J. F. Drake, M. A. Shay, and M. Swisdak, The Hall fields and fast magnetic reconnection, Phys. Plasmas, 2008, 15(4): 042306
CrossRef ADS Google scholar
[19]
A. Hasegawa and L. Chen, Kinetic processes in plasma heating by resonant mode conversion of Alfvén-wave, Phys. Fluids, 1976, 19: 1924
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(181 KB)

Accesses

Citations

Detail

Sections
Recommended

/