Time-dependent density functional theory for quantum transport

Yanho Kwok, Yu Zhang, GuanHua Chen

PDF(1130 KB)
PDF(1130 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (6) : 698-710. DOI: 10.1007/s11467-013-0361-5
REVIEW ARTICLE
REVIEW ARTICLE

Time-dependent density functional theory for quantum transport

Author information +
History +

Abstract

The rapid miniaturization of electronic devices motivates research interests in quantum transport. Recently time-dependent quantum transport has become an important research topic. Here we review recent progresses in the development of time-dependent density-functional theory for quantum transport including the theoretical foundation and numerical algorithms. In particular, the reducedsingle electron density matrix based hierarchical equation of motion, which can be derived from Liouville–von Neumann equation, is reviewed in details. The numerical implementation is discussed and simulation results of realistic devices will be given.

Graphical abstract

Keywords

tim-dependent density functional theory (TDDFT) / quantum transport / nonequilibrium Green’s function

Cite this article

Download citation ▾
Yanho Kwok, Yu Zhang, GuanHua Chen. Time-dependent density functional theory for quantum transport. Front. Phys., 2014, 9(6): 698‒710 https://doi.org/10.1007/s11467-013-0361-5

References

[1]
M. Auf der Maur, M. Povolotskyi, F. Sacconi, A. Pecchia, G. Romano, G. Penazzi, and A. Di Carlo, TiberCAD: Towards multiscale simulation of optoelectronic devices, Opt. Quantum Electron., 2008, 40(14-15): 1077
CrossRef ADS Google scholar
[2]
M. C. Petty, Molecular Electronics: From Principles to Practice, Wiley, 2008: 544
[3]
A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett., 1974, 29(2): 277
CrossRef ADS Google scholar
[4]
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science, 1997, 278(5336): 252
CrossRef ADS Google scholar
[5]
H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature, 2009, 462(7276): 1039
CrossRef ADS Google scholar
[6]
H. Song, M. A. Reed, and T. Lee, Single molecule electronic devices, Adv. Mater., 2011, 23(14): 1583
CrossRef ADS Google scholar
[7]
S. W. Wu, N. Ogawa, and W. Ho, Atomic-scale coupling of photons to single-molecule junctions, Science, 2006, 312(5778): 1362
CrossRef ADS Google scholar
[8]
M. Galperin, and A. Nitzan, Molecular optoelectronics: the interaction of molecular conduction junctions with light, Phys. Chem. Chem. Phys., 2012, 14(26): 9421
CrossRef ADS Google scholar
[9]
A. Nitzan and M. A. Ratner, Electron transport in molecular wire junctions, Science, 2003, 300(5624): 1384
CrossRef ADS Google scholar
[10]
M. Paulsson, T. Frederiksen, and M. Brandbyge, Inelastic transport through molecules: Comparing first-principles calculations to experiments, Nano Lett., 2006, 6(2): 258
CrossRef ADS Google scholar
[11]
M. Galperin, M. A Ratner, and A. Nitzan, Molecular transport junctions: Vibrational effects, J. Phys.: Condens. Matter, 2007, 19(10): 103201
CrossRef ADS Google scholar
[12]
J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, Vol. 1, World Scientific Series in Nanotechnology and Nanoscience, 2010: 703
CrossRef ADS Google scholar
[13]
T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Electrical pulse measurement, inelastic relaxation, and non-equilibrium transport in a quantum dot, J. Phys.: Condens. Matter, 2003, 15: R1395
CrossRef ADS Google scholar
[14]
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
CrossRef ADS Google scholar
[15]
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65(16): 165401
CrossRef ADS Google scholar
[16]
M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Self-consistentcharge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B, 1998, 58(11): 7260
CrossRef ADS Google scholar
[17]
T. A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, and T. Frauenheim, Tight-binding approach to time-dependent density-functional response theory, Phys. Rev. B, 2001, 63(8): 085108
CrossRef ADS Google scholar
[18]
C. Yam, L. Meng, G. H. Chen, Q. Chen, and N. Wong, Multiscale quantum mechanics/electromagnetics simulation for electronic devices, Phys. Chem. Chem. Phys., 2011, 13(32): 14365
CrossRef ADS Google scholar
[19]
L. Meng, C. Yam, S. Koo, Q. Chen, N. Wong, and G. H. Chen, Dynamic multiscale quantum mechanics/ electromagnetics simulation method, J. Chem. Theory Comput., 2012, 8(4): 1190
CrossRef ADS Google scholar
[20]
G. Stefanucci and C. O. Almbladh, Time-dependent quantum transport: An exact formulation based on TDDFT, Europhys. Lett., 2004, 67(1): 14
CrossRef ADS Google scholar
[21]
J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Phys. Rev. B, 2006, 74(8): 085324
CrossRef ADS Google scholar
[22]
S. Kurth, G. Stefanucci, C. O. Almbladh, A. Rubio, and E. K. U. Gross, Time-dependent quantum transport: A practical scheme using density functional theory, Phys. Rev. B, 2005, 72(3): 035308
CrossRef ADS Google scholar
[23]
J. Yuen-Zhou, D. G. Tempel, C. A. Rodríguez-Rosario, and A. Aspuru-Guzik, Time-dependent density functional theory for open quantum systems with unitary propagation, Phys. Rev. Lett., 2010, 104(4): 043001
CrossRef ADS Google scholar
[24]
X. Zheng, F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, Time-dependent density-functional theory for open systems, Phys. Rev. B, 2007, 75(19): 195127
CrossRef ADS Google scholar
[25]
X. Zheng, G. H. Chen, Y. Mo, S. Koo, H. Tian, C. Yam, and Y. Yan, Time-dependent density functional theory for quantum transport, J. Chem. Phys., 2010, 133(11): 114101
CrossRef ADS Google scholar
[26]
S. H. Ke, R. Liu, W. Yang, and H. U. Baranger, Timedependent transport through molecular junctions, J. Chem. Phys., 2010, 132(23): 234105
CrossRef ADS Google scholar
[27]
K. Burke, R. Car, and R. Gebauer, Density functional theory of the electrical conductivity of molecular devices, Phys. Rev. Lett., 2005, 94(14): 146803
CrossRef ADS Google scholar
[28]
Y. Zhang, S. Chen, and G. H. Chen, First-principles timedependent quantum transport theory, Phys. Rev. B, 2013, 87(8): 085110
CrossRef ADS Google scholar
[29]
S. Chen, H. Xie, Y. Zhang, X. Cui, and G. H. Chen, Quantum transport through an array of quantum dots, Nanoscale, 2013, 5(1): 169
CrossRef ADS Google scholar
[30]
A. P. Jauho, N. S. Wingreen, and Y. Meir, Timedependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B, 1994, 50(8): 5528
CrossRef ADS Google scholar
[31]
C. Y. Yam, Y. Mo, F. Wang, X. B. Li, G. H. Chen, X. Zheng, Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard III, Dynamic admittance of carbon nanotube-based molecular electronic devices and their equivalent electric circuit, Nanotechnology, 2008, 19(49): 495203
CrossRef ADS Google scholar
[32]
K. F. Albrecht, H. Wang, L. Mühlbacher, M. Thoss, and A. Komnik, Bistability signatures in nonequilibrium charge transport through molecular quantum dots, Phys. Rev. B, 2012, 86(8): 081412
CrossRef ADS Google scholar
[33]
E. Khosravi, S. Kurth, G. Stefanucci, and E. Gross, The role of bound states in time-dependent quantum transport, Appl. Phys. A, 2008, 93(2): 355
CrossRef ADS Google scholar
[34]
E. Khosravi, G. Stefanucci, S. Kurth, and E. K. Gross, Bound states in time-dependent quantum transport: Oscillations and memory effects in current and density, Phys. Chem. Chem. Phys., 2009, 11(22): 4535
CrossRef ADS Google scholar
[35]
B. Popescu, P. B. Woiczikowski, M. Elstner, and U. Kleinekathöfer, Time-dependent view of sequential transport through molecules with rapidly fluctuating bridges, Phys. Rev. Lett., 2012, 109(17): 176802
CrossRef ADS Google scholar
[36]
J. K. Tomfohr and O. F. Sankey, Time-dependent simulation of conduction through a molecule, physica status solidi (b), 2001, 226(1): 115
[37]
N. Bushong, N. Sai, and M. Di Ventra, Approach to steadystate transport in nanoscale conductors, Nano Lett., 2005, 5(12): 2569
CrossRef ADS Google scholar
[38]
J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Complex absorbing potentials, Phys. Rep., 2004, 395(6): 357
CrossRef ADS Google scholar
[39]
R. Baer, T. Seideman, S. Ilani, and D. Neuhauser, Ab initio study of the alternating current impedance of a molecular junction, J. Chem. Phys., 2004, 120(7): 3387
CrossRef ADS Google scholar
[40]
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 1964, 136(3B): B864
CrossRef ADS Google scholar
[41]
E. Runge and E. K. U. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett., 1984, 52(12): 997
CrossRef ADS Google scholar
[42]
S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Ostergaard Sorensen, Analyticity of the density of electronic wavefunctions, Arkiv för Matematik, 2004, 42(1): 87
CrossRef ADS Google scholar
[43]
S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Ostergaard Sorensen, The electron density is smooth away from the nuclei, Commun. Math. Phys., 2002, 228(3): 401
CrossRef ADS Google scholar
[44]
X. Zheng, C. Yam, F. Wang, and G. H. Chen, Existence of time-dependent density-functional theory for open electronic systems: Time-dependent holographic electron density theorem, Phys. Chem. Chem. Phys., 2011, 13(32): 14358
CrossRef ADS Google scholar
[45]
G. Vignale and W. Kohn, Current-dependent exchangecorrelation potential for dynamical linear response theory, Phys. Rev. Lett., 1996, 77(10): 2037
CrossRef ADS Google scholar
[46]
M. Di Ventra and R. D’Agosta, Stochastic time-dependent current-density-functional theory, Phys. Rev. Lett., 2007, 98(22): 226403
CrossRef ADS Google scholar
[47]
R. D’Agosta and M. Di Ventra, Stochastic time-dependent current-density-functional theory: A functional theory of open quantum systems, Phys. Rev. B, 2008, 78(16): 165105
CrossRef ADS Google scholar
[48]
M. Galperin and S. Tretiak, Linear optical response of current-carrying molecular junction: a nonequilibrium Green’s function-time-dependent density functional theory approach, J. Chem. Phys., 2008, 128(12): 124705
CrossRef ADS Google scholar
[49]
Y. Xing, B. Wang, and J. Wang, First-principles investigation of dynamical properties of molecular devices under a steplike pulse, Phys. Rev. B, 2010, 82(20): 205112
CrossRef ADS Google scholar
[50]
L. Zhang, Y. Xing, and J. Wang, First-principles investigation of transient dynamics of molecular devices, Phys. Rev. B, 2012, 86(15): 155438
CrossRef ADS Google scholar
[51]
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff–Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B, 2009, 80(11): 115107
CrossRef ADS Google scholar
[52]
R. Gebauer, K. Burke, and R. Car, in: Time-Dependent Density Functional Theory, Lecture Notes in Physics, Vol. 706, edited by M. Marques, C. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. U. Gross, Berlin Heidelberg: Springer, 2006: 463-477
CrossRef ADS Google scholar
[53]
J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys., 2008, 128(23): 234703
CrossRef ADS Google scholar
[54]
H. Tian and G. H. Chen, An efficient solution of Liouvillevon Neumann equation that is applicable to zero and finite temperatures, J. Chem. Phys., 2012, 137(20): 204114
CrossRef ADS Google scholar
[55]
H. Xie, F. Jiang, H. Tian, X. Zheng, Y. Kwok, S. Chen, C. Yam, Y. Yan, and G. H. Chen, Time-dependent quantum transport: an efficient method based on Liouville–von-Neumann equation for single-electron density matrix, J. Chem. Phys., 2012, 137(4): 044113
CrossRef ADS Google scholar
[56]
J. Hu, R. X. Xu, and Y. Yan, Communication: Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys., 2010, 133(10): 101106
CrossRef ADS Google scholar
[57]
J. R. Soderstrom, D. H. Chow, and T. C. McGill, New negative differential resistance device based on resonant interband tunneling, Appl. Phys. Lett., 1989, 55(11): 1094
CrossRef ADS Google scholar
[58]
M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, 1985, 15(4): 851
CrossRef ADS Google scholar
[59]
F. Wang, C. Y. Yam, G. H. Chen, and K. Fan, Density matrix based time-dependent density functional theory and the solution of its linear response in real time domain, J. Chem. Phys., 2007, 126(13): 134104
CrossRef ADS Google scholar
[60]
G. Stefanucci, S. Kurth, E. Gross, and A. Rubio, in: Molecular and Nano Electronics: Analysis, Design and Simulation, Theoretical and Computational Chemistry, Vol. 17, edited by J. Seminario, Els<?Pub Caret?>evier, 2007: 247-284
[61]
C. Yam, X. Zheng, G. Chen, Y. Wang, T. Frauenheim, and T. A. Niehaus, Time-dependent versus static quantum transport simulations beyond linear response, Phys. Rev. B, 2011, 83(24): 245448
CrossRef ADS Google scholar
[62]
N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems, Phys. Rev. Lett., 2005, 94(18): 186810
CrossRef ADS Google scholar
[63]
F. Evers, F. Weigend, and M. Koentopp, Conductance of molecular wires and transport calculations based on densityfunctional theory, Phys. Rev. B, 2004, 69(23): 235411
CrossRef ADS Google scholar
[64]
G. Stefanucci and S. Kurth, Towards a description of the Kondo effect using time-dependent density-functional theory, Phys. Rev. Lett., 2011, 107(21): 216401
CrossRef ADS Google scholar
[65]
E. Khosravi, A. M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, and E. K. U. Gross, Correlation effects in bistability at the nanoscale: Steady state and beyond, Phys. Rev. B, 2012, 85(7): 075103
CrossRef ADS Google scholar
[66]
S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U. Gross, Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory, Phys. Rev. Lett., 2010, 104(23): 236801
CrossRef ADS Google scholar
[67]
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, A many-body approach to quantum transport dynamics: Initial correlations and memory effects, Europhys. Lett., 2008, 84(6): 67001
CrossRef ADS Google scholar
[68]
Y. Zhang, C. Y. Yam, and G. H. Chen, Dissipative timedependent quantum transport theory, J. Chem. Phys., 2013, 138(16): 164121
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1130 KB)

Accesses

Citations

Detail

Sections
Recommended

/