Time-dependent density functional theory for quantum transport
Yanho Kwok, Yu Zhang, GuanHua Chen
Time-dependent density functional theory for quantum transport
The rapid miniaturization of electronic devices motivates research interests in quantum transport. Recently time-dependent quantum transport has become an important research topic. Here we review recent progresses in the development of time-dependent density-functional theory for quantum transport including the theoretical foundation and numerical algorithms. In particular, the reducedsingle electron density matrix based hierarchical equation of motion, which can be derived from Liouville–von Neumann equation, is reviewed in details. The numerical implementation is discussed and simulation results of realistic devices will be given.
tim-dependent density functional theory (TDDFT) / quantum transport / nonequilibrium Green’s function
[1] |
M. Auf der Maur, M. Povolotskyi, F. Sacconi, A. Pecchia, G. Romano, G. Penazzi, and A. Di Carlo, TiberCAD: Towards multiscale simulation of optoelectronic devices, Opt. Quantum Electron., 2008, 40(14-15): 1077
CrossRef
ADS
Google scholar
|
[2] |
M. C. Petty, Molecular Electronics: From Principles to Practice, Wiley, 2008: 544
|
[3] |
A. Aviram and M. A. Ratner, Molecular rectifiers, Chem. Phys. Lett., 1974, 29(2): 277
CrossRef
ADS
Google scholar
|
[4] |
M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Conductance of a molecular junction, Science, 1997, 278(5336): 252
CrossRef
ADS
Google scholar
|
[5] |
H. Song, Y. Kim, Y. H. Jang, H. Jeong, M. A. Reed, and T. Lee, Observation of molecular orbital gating, Nature, 2009, 462(7276): 1039
CrossRef
ADS
Google scholar
|
[6] |
H. Song, M. A. Reed, and T. Lee, Single molecule electronic devices, Adv. Mater., 2011, 23(14): 1583
CrossRef
ADS
Google scholar
|
[7] |
S. W. Wu, N. Ogawa, and W. Ho, Atomic-scale coupling of photons to single-molecule junctions, Science, 2006, 312(5778): 1362
CrossRef
ADS
Google scholar
|
[8] |
M. Galperin, and A. Nitzan, Molecular optoelectronics: the interaction of molecular conduction junctions with light, Phys. Chem. Chem. Phys., 2012, 14(26): 9421
CrossRef
ADS
Google scholar
|
[9] |
A. Nitzan and M. A. Ratner, Electron transport in molecular wire junctions, Science, 2003, 300(5624): 1384
CrossRef
ADS
Google scholar
|
[10] |
M. Paulsson, T. Frederiksen, and M. Brandbyge, Inelastic transport through molecules: Comparing first-principles calculations to experiments, Nano Lett., 2006, 6(2): 258
CrossRef
ADS
Google scholar
|
[11] |
M. Galperin, M. A Ratner, and A. Nitzan, Molecular transport junctions: Vibrational effects, J. Phys.: Condens. Matter, 2007, 19(10): 103201
CrossRef
ADS
Google scholar
|
[12] |
J. C. Cuevas and E. Scheer, Molecular Electronics: An Introduction to Theory and Experiment, Vol. 1, World Scientific Series in Nanotechnology and Nanoscience, 2010: 703
CrossRef
ADS
Google scholar
|
[13] |
T. Fujisawa, D. G. Austing, Y. Tokura, Y. Hirayama, and S. Tarucha, Electrical pulse measurement, inelastic relaxation, and non-equilibrium transport in a quantum dot, J. Phys.: Condens. Matter, 2003, 15: R1395
CrossRef
ADS
Google scholar
|
[14] |
J. Taylor, H. Guo, and J. Wang, Ab initio modeling of quantum transport properties of molecular electronic devices, Phys. Rev. B, 2001, 63(24): 245407
CrossRef
ADS
Google scholar
|
[15] |
M. Brandbyge, J. L. Mozos, P. Ordejón, J. Taylor, and K. Stokbro, Density-functional method for nonequilibrium electron transport, Phys. Rev. B, 2002, 65(16): 165401
CrossRef
ADS
Google scholar
|
[16] |
M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim, S. Suhai, and G. Seifert, Self-consistentcharge density-functional tight-binding method for simulations of complex materials properties, Phys. Rev. B, 1998, 58(11): 7260
CrossRef
ADS
Google scholar
|
[17] |
T. A. Niehaus, S. Suhai, F. Della Sala, P. Lugli, M. Elstner, G. Seifert, and T. Frauenheim, Tight-binding approach to time-dependent density-functional response theory, Phys. Rev. B, 2001, 63(8): 085108
CrossRef
ADS
Google scholar
|
[18] |
C. Yam, L. Meng, G. H. Chen, Q. Chen, and N. Wong, Multiscale quantum mechanics/electromagnetics simulation for electronic devices, Phys. Chem. Chem. Phys., 2011, 13(32): 14365
CrossRef
ADS
Google scholar
|
[19] |
L. Meng, C. Yam, S. Koo, Q. Chen, N. Wong, and G. H. Chen, Dynamic multiscale quantum mechanics/ electromagnetics simulation method, J. Chem. Theory Comput., 2012, 8(4): 1190
CrossRef
ADS
Google scholar
|
[20] |
G. Stefanucci and C. O. Almbladh, Time-dependent quantum transport: An exact formulation based on TDDFT, Europhys. Lett., 2004, 67(1): 14
CrossRef
ADS
Google scholar
|
[21] |
J. Maciejko, J. Wang, and H. Guo, Time-dependent quantum transport far from equilibrium: An exact nonlinear response theory, Phys. Rev. B, 2006, 74(8): 085324
CrossRef
ADS
Google scholar
|
[22] |
S. Kurth, G. Stefanucci, C. O. Almbladh, A. Rubio, and E. K. U. Gross, Time-dependent quantum transport: A practical scheme using density functional theory, Phys. Rev. B, 2005, 72(3): 035308
CrossRef
ADS
Google scholar
|
[23] |
J. Yuen-Zhou, D. G. Tempel, C. A. Rodríguez-Rosario, and A. Aspuru-Guzik, Time-dependent density functional theory for open quantum systems with unitary propagation, Phys. Rev. Lett., 2010, 104(4): 043001
CrossRef
ADS
Google scholar
|
[24] |
X. Zheng, F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, Time-dependent density-functional theory for open systems, Phys. Rev. B, 2007, 75(19): 195127
CrossRef
ADS
Google scholar
|
[25] |
X. Zheng, G. H. Chen, Y. Mo, S. Koo, H. Tian, C. Yam, and Y. Yan, Time-dependent density functional theory for quantum transport, J. Chem. Phys., 2010, 133(11): 114101
CrossRef
ADS
Google scholar
|
[26] |
S. H. Ke, R. Liu, W. Yang, and H. U. Baranger, Timedependent transport through molecular junctions, J. Chem. Phys., 2010, 132(23): 234105
CrossRef
ADS
Google scholar
|
[27] |
K. Burke, R. Car, and R. Gebauer, Density functional theory of the electrical conductivity of molecular devices, Phys. Rev. Lett., 2005, 94(14): 146803
CrossRef
ADS
Google scholar
|
[28] |
Y. Zhang, S. Chen, and G. H. Chen, First-principles timedependent quantum transport theory, Phys. Rev. B, 2013, 87(8): 085110
CrossRef
ADS
Google scholar
|
[29] |
S. Chen, H. Xie, Y. Zhang, X. Cui, and G. H. Chen, Quantum transport through an array of quantum dots, Nanoscale, 2013, 5(1): 169
CrossRef
ADS
Google scholar
|
[30] |
A. P. Jauho, N. S. Wingreen, and Y. Meir, Timedependent transport in interacting and noninteracting resonant-tunneling systems, Phys. Rev. B, 1994, 50(8): 5528
CrossRef
ADS
Google scholar
|
[31] |
C. Y. Yam, Y. Mo, F. Wang, X. B. Li, G. H. Chen, X. Zheng, Y. Matsuda, J. Tahir-Kheli, and W. A. Goddard III, Dynamic admittance of carbon nanotube-based molecular electronic devices and their equivalent electric circuit, Nanotechnology, 2008, 19(49): 495203
CrossRef
ADS
Google scholar
|
[32] |
K. F. Albrecht, H. Wang, L. Mühlbacher, M. Thoss, and A. Komnik, Bistability signatures in nonequilibrium charge transport through molecular quantum dots, Phys. Rev. B, 2012, 86(8): 081412
CrossRef
ADS
Google scholar
|
[33] |
E. Khosravi, S. Kurth, G. Stefanucci, and E. Gross, The role of bound states in time-dependent quantum transport, Appl. Phys. A, 2008, 93(2): 355
CrossRef
ADS
Google scholar
|
[34] |
E. Khosravi, G. Stefanucci, S. Kurth, and E. K. Gross, Bound states in time-dependent quantum transport: Oscillations and memory effects in current and density, Phys. Chem. Chem. Phys., 2009, 11(22): 4535
CrossRef
ADS
Google scholar
|
[35] |
B. Popescu, P. B. Woiczikowski, M. Elstner, and U. Kleinekathöfer, Time-dependent view of sequential transport through molecules with rapidly fluctuating bridges, Phys. Rev. Lett., 2012, 109(17): 176802
CrossRef
ADS
Google scholar
|
[36] |
J. K. Tomfohr and O. F. Sankey, Time-dependent simulation of conduction through a molecule, physica status solidi (b), 2001, 226(1): 115
|
[37] |
N. Bushong, N. Sai, and M. Di Ventra, Approach to steadystate transport in nanoscale conductors, Nano Lett., 2005, 5(12): 2569
CrossRef
ADS
Google scholar
|
[38] |
J. Muga, J. Palao, B. Navarro, and I. Egusquiza, Complex absorbing potentials, Phys. Rep., 2004, 395(6): 357
CrossRef
ADS
Google scholar
|
[39] |
R. Baer, T. Seideman, S. Ilani, and D. Neuhauser, Ab initio study of the alternating current impedance of a molecular junction, J. Chem. Phys., 2004, 120(7): 3387
CrossRef
ADS
Google scholar
|
[40] |
P. Hohenberg and W. Kohn, Inhomogeneous electron gas, Phys. Rev., 1964, 136(3B): B864
CrossRef
ADS
Google scholar
|
[41] |
E. Runge and E. K. U. Gross, Density-functional theory for time-dependent systems, Phys. Rev. Lett., 1984, 52(12): 997
CrossRef
ADS
Google scholar
|
[42] |
S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Ostergaard Sorensen, Analyticity of the density of electronic wavefunctions, Arkiv för Matematik, 2004, 42(1): 87
CrossRef
ADS
Google scholar
|
[43] |
S. Fournais, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof, and T. Ostergaard Sorensen, The electron density is smooth away from the nuclei, Commun. Math. Phys., 2002, 228(3): 401
CrossRef
ADS
Google scholar
|
[44] |
X. Zheng, C. Yam, F. Wang, and G. H. Chen, Existence of time-dependent density-functional theory for open electronic systems: Time-dependent holographic electron density theorem, Phys. Chem. Chem. Phys., 2011, 13(32): 14358
CrossRef
ADS
Google scholar
|
[45] |
G. Vignale and W. Kohn, Current-dependent exchangecorrelation potential for dynamical linear response theory, Phys. Rev. Lett., 1996, 77(10): 2037
CrossRef
ADS
Google scholar
|
[46] |
M. Di Ventra and R. D’Agosta, Stochastic time-dependent current-density-functional theory, Phys. Rev. Lett., 2007, 98(22): 226403
CrossRef
ADS
Google scholar
|
[47] |
R. D’Agosta and M. Di Ventra, Stochastic time-dependent current-density-functional theory: A functional theory of open quantum systems, Phys. Rev. B, 2008, 78(16): 165105
CrossRef
ADS
Google scholar
|
[48] |
M. Galperin and S. Tretiak, Linear optical response of current-carrying molecular junction: a nonequilibrium Green’s function-time-dependent density functional theory approach, J. Chem. Phys., 2008, 128(12): 124705
CrossRef
ADS
Google scholar
|
[49] |
Y. Xing, B. Wang, and J. Wang, First-principles investigation of dynamical properties of molecular devices under a steplike pulse, Phys. Rev. B, 2010, 82(20): 205112
CrossRef
ADS
Google scholar
|
[50] |
L. Zhang, Y. Xing, and J. Wang, First-principles investigation of transient dynamics of molecular devices, Phys. Rev. B, 2012, 86(15): 155438
CrossRef
ADS
Google scholar
|
[51] |
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, Kadanoff–Baym approach to quantum transport through interacting nanoscale systems: From the transient to the steady-state regime, Phys. Rev. B, 2009, 80(11): 115107
CrossRef
ADS
Google scholar
|
[52] |
R. Gebauer, K. Burke, and R. Car, in: Time-Dependent Density Functional Theory, Lecture Notes in Physics, Vol. 706, edited by M. Marques, C. Ullrich, F. Nogueira, A. Rubio, K. Burke, and E. U. Gross, Berlin Heidelberg: Springer, 2006: 463-477
CrossRef
ADS
Google scholar
|
[53] |
J. Jin, X. Zheng, and Y. Yan, Exact dynamics of dissipative electronic systems and quantum transport: Hierarchical equations of motion approach, J. Chem. Phys., 2008, 128(23): 234703
CrossRef
ADS
Google scholar
|
[54] |
H. Tian and G. H. Chen, An efficient solution of Liouvillevon Neumann equation that is applicable to zero and finite temperatures, J. Chem. Phys., 2012, 137(20): 204114
CrossRef
ADS
Google scholar
|
[55] |
H. Xie, F. Jiang, H. Tian, X. Zheng, Y. Kwok, S. Chen, C. Yam, Y. Yan, and G. H. Chen, Time-dependent quantum transport: an efficient method based on Liouville–von-Neumann equation for single-electron density matrix, J. Chem. Phys., 2012, 137(4): 044113
CrossRef
ADS
Google scholar
|
[56] |
J. Hu, R. X. Xu, and Y. Yan, Communication: Padé spectrum decomposition of Fermi function and Bose function, J. Chem. Phys., 2010, 133(10): 101106
CrossRef
ADS
Google scholar
|
[57] |
J. R. Soderstrom, D. H. Chow, and T. C. McGill, New negative differential resistance device based on resonant interband tunneling, Appl. Phys. Lett., 1989, 55(11): 1094
CrossRef
ADS
Google scholar
|
[58] |
M. P. L. Sancho, J. M. L. Sancho, J. M. L. Sancho, and J. Rubio, Highly convergent schemes for the calculation of bulk and surface Green functions, J. Phys. F, 1985, 15(4): 851
CrossRef
ADS
Google scholar
|
[59] |
F. Wang, C. Y. Yam, G. H. Chen, and K. Fan, Density matrix based time-dependent density functional theory and the solution of its linear response in real time domain, J. Chem. Phys., 2007, 126(13): 134104
CrossRef
ADS
Google scholar
|
[60] |
G. Stefanucci, S. Kurth, E. Gross, and A. Rubio, in: Molecular and Nano Electronics: Analysis, Design and Simulation, Theoretical and Computational Chemistry, Vol. 17, edited by J. Seminario, Els<?Pub Caret?>evier, 2007: 247-284
|
[61] |
C. Yam, X. Zheng, G. Chen, Y. Wang, T. Frauenheim, and T. A. Niehaus, Time-dependent versus static quantum transport simulations beyond linear response, Phys. Rev. B, 2011, 83(24): 245448
CrossRef
ADS
Google scholar
|
[62] |
N. Sai, M. Zwolak, G. Vignale, and M. Di Ventra, Dynamical corrections to the DFT-LDA electron conductance in nanoscale systems, Phys. Rev. Lett., 2005, 94(18): 186810
CrossRef
ADS
Google scholar
|
[63] |
F. Evers, F. Weigend, and M. Koentopp, Conductance of molecular wires and transport calculations based on densityfunctional theory, Phys. Rev. B, 2004, 69(23): 235411
CrossRef
ADS
Google scholar
|
[64] |
G. Stefanucci and S. Kurth, Towards a description of the Kondo effect using time-dependent density-functional theory, Phys. Rev. Lett., 2011, 107(21): 216401
CrossRef
ADS
Google scholar
|
[65] |
E. Khosravi, A. M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, and E. K. U. Gross, Correlation effects in bistability at the nanoscale: Steady state and beyond, Phys. Rev. B, 2012, 85(7): 075103
CrossRef
ADS
Google scholar
|
[66] |
S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U. Gross, Dynamical Coulomb blockade and the derivative discontinuity of time-dependent density functional theory, Phys. Rev. Lett., 2010, 104(23): 236801
CrossRef
ADS
Google scholar
|
[67] |
P. Myöhänen, A. Stan, G. Stefanucci, and R. van Leeuwen, A many-body approach to quantum transport dynamics: Initial correlations and memory effects, Europhys. Lett., 2008, 84(6): 67001
CrossRef
ADS
Google scholar
|
[68] |
Y. Zhang, C. Y. Yam, and G. H. Chen, Dissipative timedependent quantum transport theory, J. Chem. Phys., 2013, 138(16): 164121
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |