Quantum tunneling of ultracold atoms in optical traps

Jian-Hua Wu , Ran Qi , An-Chun Ji , Wu-Ming Liu

Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 137 -152.

PDF (524KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 137 -152. DOI: 10.1007/s11467-013-0359-z
REVIEW ARTICLE

Quantum tunneling of ultracold atoms in optical traps

Author information +
History +
PDF (524KB)

Abstract

We review our theoretical advances in quantum tunneling of Bose–Einstein condensates in optical traps and in microcavities. By employing a real physical system, the frequencies of the pseudo Goldstone modes in different phases between two optical traps are studied respectively, which are the crucial feature of the non-Abelian Josephson effect. When the optical lattices are under gravity, we investigate the quantum tunneling in the “Wannier–Stark localization” regime and “Landau–Zener tunneling” regime. We finally get the total decay rate and the rate is valid over the entire range of temperatures. At high temperatures, we show how the decay rate reduces to the appropriate results for the classical thermal activation. At intermediate temperatures, the results of the total decay rate are consistent with the thermally assisted tunneling. At low temperatures, we obtain the pure quantum tunneling ultimately. And we study the alternating-current and direct-current (ac and dc) photonic Josephson effects in two weakly linked microcavities containing ultracold two-level atoms, which allows for direct observation of the effects. This enables new investigations of the effect of many-body physics in strongly coupled atom-cavity systems and provides a strategy for constructing novel interference devices of coherent photons. In addition, we propose the experimental protocols to observe these quantum tunneling of Bose–Einstein condensates.

Graphical abstract

Keywords

quantum tunneling / Josephson effect / Landau–Zener tunneling / atom-cavity

Cite this article

Download citation ▾
Jian-Hua Wu, Ran Qi, An-Chun Ji, Wu-Ming Liu. Quantum tunneling of ultracold atoms in optical traps. Front. Phys., 2014, 9(2): 137-152 DOI:10.1007/s11467-013-0359-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. R. Gordon, C. Teague, R. A. Serway, and Chris Vuille, College Physics, Vol. 2, Brooks Cole Publishing Company

[2]

J. R. Taylor, C. D. Zafirators, and M. A. Dumbson, Modern Physics for scientists and engineers, Pearson Prentice Hall, 2004: 234

[3]

M. Razavy, Quantum Theory of Tunneling, Singapore: World Scientific, 2003: 4, 462

[4]

G. Nimtz and A. Haibel, Zero Time Space, Wiley-VCH, 2008: 1

[5]

B. Xia, W. Hai, and G. Chong, Stability and chaotic behavior of a two-component Bose–Einstein condensate, Phys. Lett. A, 2006, 351(3): 136

[6]

Q. Zhang, P. Hanggi, and J. Gong, Two-mode Bose–Einstein condensate in a high-frequency driving field that directly couples the two modes, Phys. Rev. A, 2008, 77(5): 053607

[7]

N. Tsukada, M. Gotoda, Y. Nomura, and T. Isu, Laserassisted coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. A, 1999, 59(5): 3862

[8]

H. L. Zheng and QiangGu, Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with doublewell potential, Front. Phys., 2013

[9]

C. E. Creffield, Coherent control of self-trapping of cold bosonic atoms, Phys. Rev. A, 2007, 75(3): 031607

[10]

C. Weiss and N. Teichmann, Differences between mean-field dynamics and N-particle quantum dynamics as a signature of entanglement, Phys. Rev. Lett., 2008, 100(14): 140408

[11]

A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, Analog of photon-assisted tunneling in a Bose–Einstein condensate, Phys. Rev. Lett., 2005, 95(20): 200401

[12]

T. Jinasundera, C. Weiss, and M. Holthaus, Manyparticle tunnelling in a driven bosonic Josephson junction, Chem. Phys., 2006, 322(1-2): 118

[13]

N. Teichmann, M. Esmann, and C.Weiss, Fractional photonassisted tunneling for Bose–Einstein condensates in a double well, Phys. Rev. A, 2009, 79(6): 063620

[14]

M. Holthaus, Towards coherent control of a Bose–Einstein condensate in a double well, Phys. Rev. A, 2001, 64(1): 011601(R)

[15]

S. Kohler and F. Sols, Chemical potential standard for atomic Bose–Einstein condensates, New J. Phys., 2003, 5: 94

[16]

X. F. Zhang, X. H. Hu, D. S. Wang, X. X. Liu, and W. M. Liu, Dynamics of Bose–Einstein condensates near Feshbach resonance in external potential, Front. Phys., 2011, 6(1): 46

[17]

G. F. Wang, L. B. Fu, and J. Liu, Periodic modulation effect on self-trapping of two weakly coupled Bose–Einstein condensates, Phys. Rev. A, 2006, 73(1): 013619

[18]

Q. T. Xie, Nonlinear floquet solutions of two periodically driven Bose–Einstein condensates, Phys. Rev. A, 2007, 76(4): 043622

[19]

X. B. Luo, Q. T. Xie, and B. Wu, Nonlinear coherent destruction of tunneling, Phys. Rev. A, 2007, 76(5): 051802

[20]

X. Luo, Q. Xie, and B. Wu, Quasienergies and floquet states of two weakly coupled Bose–Einstein condensates under periodic driving, Phys. Rev. A, 2008, 77(5): 053601

[21]

Y. H. Chen, W. Wu, G. C. Liu, H. S. Tao, and W. M. Liu, Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys., 2012, 7(2): 223

[22]

A. Eckardt, C. Weiss, and M. Holthaus, Superfluid–insulator transition in a periodically driven optical lattice, Phys. Rev. Lett., 2005, 95(26): 260404

[23]

B. Y. Ou, X. G. Zhao, J. Liu, and S. G. Chen, Nonlinear tunneling and chaos between two Bose–Einstein condensates trapped in time-dependent potential, Phys. Lett. A, 2001, 291(1): 17

[24]

F. K. Abdullaev and R. A. Kraenkel, Coherent atomic oscillations and resonances between coupled Bose–Einstein condensates with time-dependent trapping potential, Phys. Rev. A, 2000, 62(2): 023613

[25]

C. F. Bharucha, K.W. Madison, P. R. Morrow, S. R. Wilkinson, B. Sundaram, and M. G. Raizen, Observation of atomic tunneling from an accelerating optical potential, Phys. Rev. A, 1997, 55(2): R857

[26]

A. Sibille, J. F. Palmier, and F. Laruelle, Zener interminiband resonant breakdown in superlattices, Phys. Rev. Lett., 1998, 80(20): 4506

[27]

A. Izmalkov, M. Grajcar, E. Ilichev, N. Oukhanski, T. Wagner, H.G. Meyer, W. Krech, M. H. S. Amin, A. M. Brink, and A. M. Zagoskin, Observation of macroscopic Landau–Zener transitions in a superconducting device, Europhys. Lett., 2004, 65(6): 844

[28]

B. D. Josephson, Possible new effects in superconductive tunnelling, Phys. Lett., 1962, 1(7): 251

[29]

M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett., 2005, 95(1): 010402

[30]

Y. Shin, G. B. Jo, M. Saba, T. A. Pasquini, W. Ketterle, and D. E. Pritchard, Optical weak link between two spatially separated Bose–Einstein condensates, Phys. Rev. Lett., 2005, 95(17): 170402

[31]

A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett., 1997, 79(25): 4950

[32]

A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, New York: Wiley, 1982

[33]

F. P. Esposito, L. P. Guay, R. B. MacKenzie, M. B. Paranjape, and L. C. R. Wijewardhana, Field theoretic description of the Abelian and non-Abelian Josephson effect, Phys. Rev. Lett., 2007, 98(24): 241602

[34]

R. Qi, X. L. Yu, Z. B. Li, and W. M. Liu, Non-Abelian Josephson effect between two F= 2 spinor Bose–Einstein condensates in double optical traps, Phys. Rev. Lett., 2009, 102(18): 185301

[35]

M. Ueda and M. Koashi, Theory of spin-2 Bose–Einstein condensates: Spin correlations, magnetic response, and excitation spectra, Phys. Rev. A, 2002, 65(6): 063602

[36]

C. V. Ciobanu, S. K. Yip, and T. L. Ho, Phase diagrams of F = 2 spinor Bose–Einstein condensates, Phys. Rev. A, 2000, 61(3): 033607

[37]

R. Barnett, S. Mukerjee, and J. E. Moore, Vortex lattice transitions in cyclic spinor condensates, Phys. Rev. Lett., 2008, 100(24): 240405

[38]

R. Barnett, A. Turner, and E. Demler, Classifying novel phases of spinor atoms, Phys. Rev. Lett., 2006, 97(18): 180412

[39]

H. Schmaljohann, M. Erhard, and J. Kronj, Dynamics of F = 2 spinor Bose–Einstein condensates, Phys. Rev. Lett., 2004, 92(4): 040402

[40]

D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. J. Miesner, J. Stenger, and W. Ketterle, Optical confinement of a Bose–Einstein condensate, Phys. Rev. Lett., 1998, 80(10): 2027

[41]

T. Ohmi and K. Machida, Bose–Einstein condensation with internal degrees of freedom in alkali atom gases, J. Phys. Soc. Jpn., 1998, 67: 1822

[42]

T. L. Ho, Spinor Bose condensates in optical traps, Phys. Rev. Lett., 1998, 81(4): 742

[43]

S. Ashhab and C. Lobo, External Josephson effect in Bose–Einstein condensates with a spin degree of freedom, Phys. Rev. A, 2002, 66(1): 013609

[44]

H. T. Ng, C. K. Law, and P. T. Leung, Quantum-correlated double-well tunneling of two-component Bose–Einstein condensates, Phys. Rev. A, 2003, 68(1): 013604

[45]

A. J. Leggett, Bose–Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys., 2001, 73(2): 307

[46]

O. E. Mustecaplioglu, M. Zhang, and L. You, Tunneling of condensate magnetization in a double-well potential, Phys. Rev. A, 2005, 71(5): 053616

[47]

O. E. Mustecaplioglu, W. Zhang, and L. You, Quantum dynamics of a spin-1 condensate in a double-well potential, Phys. Rev. A, 2007, 75(2): 023605

[48]

M. S. Chang, C. Hamley, M. Barrett, J. Sauer, K. Fortier, W. Zhang, L. You, and M. Chapman, Observation of spinor dynamics in optically trapped 87Rb Bose–Einstein condensates, Phys. Rev. Lett., 2004, 92(14): 140403

[49]

W. M. Liu, W. B. Fan, W. M. Zheng, J. Q. Liang, and S. T. Chui, Quantum tunneling of Bose–Einstein condensates in optical lattices under gravity, Phys. Rev. Lett., 2002, 88(17): 170408

[50]

J. Q. Liang and H. J. W. Muller-Kirsten, Bounces and the calculation of quantum tunneling effects, Phys. Rev. D, 1992, 45(8): 2963

[51]

B. P. Anderson and M. A. Kasevich, Macroscopic quantum interference from atomic tunnel arrays, Science, 1998, 282: 1686

[52]

F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson junction arrays with Bose–Einstein condensates, Science, 2001, 293(5531): 843

[53]

U. Weiss, Quantum Dissipative Systems, Singapore: World Scientific, 1993

[54]

V.V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Artoni, M. L. Chiofalo, and G. M. Tino, Coherent delocalization of atomic wave packets in driven lattice potentials, Phys. Rev. Lett., 2008, 100(4): 043602

[55]

C. F. Bharucha, K.W. Madison, P. P. Morrow, S. R. Wilkinson, B. Sundaram, and M. G. Raizen, Observation of atomic tunneling from an accelerating optical potential, Phys. Rev. A, 1997, 55(2): R857

[56]

L. S. Schulman, Techiques and Applications of Path Integration, New York: Wiley-Interscience, 1981

[57]

A.C. Ji, Q. Sun, X. C. Xie, and W. M. Liu, Josephson effect for photons in two weakly linked microcavities, Phys. Rev. Lett., 2009, 102(2): 023602

[58]

P. R. Eastham, and P. B. Littlewood, Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium of a model microcavity, Phys. Rev. B, 2001, 64(23): 235101

[59]

S. Giovanazzi, A. Smerzi, and S. Fantoni, Josephson effects in dilute Bose–Einstein condensates, Phys. Rev. Lett., 2000, 84(20): 4521

[60]

S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature, 2007, 449(7162): 579

[61]

Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip, Nature, 2007, 450(7167): 272

[62]

R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev., 1954, 93(1): 99

[63]

F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, Cavity QED with a Bose–Einstein condensate, Nature, 2007, 450(7167): 268

[64]

V. N. Popov and V. S. Yarunin, Collective Effects in Quantum Statistics of Radiation and Matter, Dordrecht: Kluwer Academic Publishers, 1988

[65]

M. J. Hartmann and G. S. L. Fernando, Strongly interacting polaritons in coupled arrays of cavities, Nat. Phys., 2006, 2(12): 849

[66]

A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett., 1997, 79(25): 4950

[67]

S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, π-oscillations, and macroscopic quantum self-trapping, Phys. Rev. A, 1999, 59(1): 620

[68]

H. J. Kimble, Cavity Quantum Electrodynamics, edited by P. R. Berman, New York: Academic, 1994

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (524KB)

Supplementary files

Supplementary Material

1123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/