Quantum tunneling of ultracold atoms in optical traps

Jian-Hua Wu, Ran Qi, An-Chun Ji, Wu-Ming Liu

PDF(524 KB)
PDF(524 KB)
Front. Phys. ›› 2014, Vol. 9 ›› Issue (2) : 137-152. DOI: 10.1007/s11467-013-0359-z
REVIEW ARTICLE
REVIEW ARTICLE

Quantum tunneling of ultracold atoms in optical traps

Author information +
History +

Abstract

We review our theoretical advances in quantum tunneling of Bose–Einstein condensates in optical traps and in microcavities. By employing a real physical system, the frequencies of the pseudo Goldstone modes in different phases between two optical traps are studied respectively, which are the crucial feature of the non-Abelian Josephson effect. When the optical lattices are under gravity, we investigate the quantum tunneling in the “Wannier–Stark localization” regime and “Landau–Zener tunneling” regime. We finally get the total decay rate and the rate is valid over the entire range of temperatures. At high temperatures, we show how the decay rate reduces to the appropriate results for the classical thermal activation. At intermediate temperatures, the results of the total decay rate are consistent with the thermally assisted tunneling. At low temperatures, we obtain the pure quantum tunneling ultimately. And we study the alternating-current and direct-current (ac and dc) photonic Josephson effects in two weakly linked microcavities containing ultracold two-level atoms, which allows for direct observation of the effects. This enables new investigations of the effect of many-body physics in strongly coupled atom-cavity systems and provides a strategy for constructing novel interference devices of coherent photons. In addition, we propose the experimental protocols to observe these quantum tunneling of Bose–Einstein condensates.

Graphical abstract

Keywords

quantum tunneling / Josephson effect / Landau–Zener tunneling / atom-cavity

Cite this article

Download citation ▾
Jian-Hua Wu, Ran Qi, An-Chun Ji, Wu-Ming Liu. Quantum tunneling of ultracold atoms in optical traps. Front. Phys., 2014, 9(2): 137‒152 https://doi.org/10.1007/s11467-013-0359-z

References

[1]
J. R. Gordon, C. Teague, R. A. Serway, and Chris Vuille, College Physics, Vol. 2, Brooks Cole Publishing Company
[2]
J. R. Taylor, C. D. Zafirators, and M. A. Dumbson, Modern Physics for scientists and engineers, Pearson Prentice Hall, 2004: 234
[3]
M. Razavy, Quantum Theory of Tunneling, Singapore: World Scientific, 2003: 4, 462
[4]
G. Nimtz and A. Haibel, Zero Time Space, Wiley-VCH, 2008: 1
[5]
B. Xia, W. Hai, and G. Chong, Stability and chaotic behavior of a two-component Bose–Einstein condensate, Phys. Lett. A, 2006, 351(3): 136
CrossRef ADS Google scholar
[6]
Q. Zhang, P. Hanggi, and J. Gong, Two-mode Bose–Einstein condensate in a high-frequency driving field that directly couples the two modes, Phys. Rev. A, 2008, 77(5): 053607
CrossRef ADS Google scholar
[7]
N. Tsukada, M. Gotoda, Y. Nomura, and T. Isu, Laserassisted coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. A, 1999, 59(5): 3862
CrossRef ADS Google scholar
[8]
H. L. Zheng and QiangGu, Dynamics of Bose–Einstein condensates in a one-dimensional optical lattice with doublewell potential, Front. Phys., 2013
CrossRef ADS Google scholar
[9]
C. E. Creffield, Coherent control of self-trapping of cold bosonic atoms, Phys. Rev. A, 2007, 75(3): 031607
CrossRef ADS Google scholar
[10]
C. Weiss and N. Teichmann, Differences between mean-field dynamics and N-particle quantum dynamics as a signature of entanglement, Phys. Rev. Lett., 2008, 100(14): 140408
CrossRef ADS Google scholar
[11]
A. Eckardt, T. Jinasundera, C. Weiss, and M. Holthaus, Analog of photon-assisted tunneling in a Bose–Einstein condensate, Phys. Rev. Lett., 2005, 95(20): 200401
CrossRef ADS Google scholar
[12]
T. Jinasundera, C. Weiss, and M. Holthaus, Manyparticle tunnelling in a driven bosonic Josephson junction, Chem. Phys., 2006, 322(1-2): 118
CrossRef ADS Google scholar
[13]
N. Teichmann, M. Esmann, and C.Weiss, Fractional photonassisted tunneling for Bose–Einstein condensates in a double well, Phys. Rev. A, 2009, 79(6): 063620
CrossRef ADS Google scholar
[14]
M. Holthaus, Towards coherent control of a Bose–Einstein condensate in a double well, Phys. Rev. A, 2001, 64(1): 011601(R)
CrossRef ADS Google scholar
[15]
S. Kohler and F. Sols, Chemical potential standard for atomic Bose–Einstein condensates, New J. Phys., 2003, 5: 94
CrossRef ADS Google scholar
[16]
X. F. Zhang, X. H. Hu, D. S. Wang, X. X. Liu, and W. M. Liu, Dynamics of Bose–Einstein condensates near Feshbach resonance in external potential, Front. Phys., 2011, 6(1): 46
CrossRef ADS Google scholar
[17]
G. F. Wang, L. B. Fu, and J. Liu, Periodic modulation effect on self-trapping of two weakly coupled Bose–Einstein condensates, Phys. Rev. A, 2006, 73(1): 013619
CrossRef ADS Google scholar
[18]
Q. T. Xie, Nonlinear floquet solutions of two periodically driven Bose–Einstein condensates, Phys. Rev. A, 2007, 76(4): 043622
CrossRef ADS Google scholar
[19]
X. B. Luo, Q. T. Xie, and B. Wu, Nonlinear coherent destruction of tunneling, Phys. Rev. A, 2007, 76(5): 051802
CrossRef ADS Google scholar
[20]
X. Luo, Q. Xie, and B. Wu, Quasienergies and floquet states of two weakly coupled Bose–Einstein condensates under periodic driving, Phys. Rev. A, 2008, 77(5): 053601
CrossRef ADS Google scholar
[21]
Y. H. Chen, W. Wu, G. C. Liu, H. S. Tao, and W. M. Liu, Quantum phase transition of cold atoms trapped in optical lattices, Front. Phys., 2012, 7(2): 223
CrossRef ADS Google scholar
[22]
A. Eckardt, C. Weiss, and M. Holthaus, Superfluid–insulator transition in a periodically driven optical lattice, Phys. Rev. Lett., 2005, 95(26): 260404
CrossRef ADS Google scholar
[23]
B. Y. Ou, X. G. Zhao, J. Liu, and S. G. Chen, Nonlinear tunneling and chaos between two Bose–Einstein condensates trapped in time-dependent potential, Phys. Lett. A, 2001, 291(1): 17
CrossRef ADS Google scholar
[24]
F. K. Abdullaev and R. A. Kraenkel, Coherent atomic oscillations and resonances between coupled Bose–Einstein condensates with time-dependent trapping potential, Phys. Rev. A, 2000, 62(2): 023613
CrossRef ADS Google scholar
[25]
C. F. Bharucha, K.W. Madison, P. R. Morrow, S. R. Wilkinson, B. Sundaram, and M. G. Raizen, Observation of atomic tunneling from an accelerating optical potential, Phys. Rev. A, 1997, 55(2): R857
CrossRef ADS Google scholar
[26]
A. Sibille, J. F. Palmier, and F. Laruelle, Zener interminiband resonant breakdown in superlattices, Phys. Rev. Lett., 1998, 80(20): 4506
CrossRef ADS Google scholar
[27]
A. Izmalkov, M. Grajcar, E. Ilichev, N. Oukhanski, T. Wagner, H.G. Meyer, W. Krech, M. H. S. Amin, A. M. Brink, and A. M. Zagoskin, Observation of macroscopic Landau–Zener transitions in a superconducting device, Europhys. Lett., 2004, 65(6): 844
CrossRef ADS Google scholar
[28]
B. D. Josephson, Possible new effects in superconductive tunnelling, Phys. Lett., 1962, 1(7): 251
CrossRef ADS Google scholar
[29]
M. Albiez, R. Gati, J. Fölling, S. Hunsmann, M. Cristiani, and M. K. Oberthaler, Direct observation of tunneling and nonlinear self-trapping in a single bosonic Josephson junction, Phys. Rev. Lett., 2005, 95(1): 010402
CrossRef ADS Google scholar
[30]
Y. Shin, G. B. Jo, M. Saba, T. A. Pasquini, W. Ketterle, and D. E. Pritchard, Optical weak link between two spatially separated Bose–Einstein condensates, Phys. Rev. Lett., 2005, 95(17): 170402
CrossRef ADS Google scholar
[31]
A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett., 1997, 79(25): 4950
CrossRef ADS Google scholar
[32]
A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, New York: Wiley, 1982
[33]
F. P. Esposito, L. P. Guay, R. B. MacKenzie, M. B. Paranjape, and L. C. R. Wijewardhana, Field theoretic description of the Abelian and non-Abelian Josephson effect, Phys. Rev. Lett., 2007, 98(24): 241602
CrossRef ADS Google scholar
[34]
R. Qi, X. L. Yu, Z. B. Li, and W. M. Liu, Non-Abelian Josephson effect between two F= 2 spinor Bose–Einstein condensates in double optical traps, Phys. Rev. Lett., 2009, 102(18): 185301
CrossRef ADS Google scholar
[35]
M. Ueda and M. Koashi, Theory of spin-2 Bose–Einstein condensates: Spin correlations, magnetic response, and excitation spectra, Phys. Rev. A, 2002, 65(6): 063602
CrossRef ADS Google scholar
[36]
C. V. Ciobanu, S. K. Yip, and T. L. Ho, Phase diagrams of F = 2 spinor Bose–Einstein condensates, Phys. Rev. A, 2000, 61(3): 033607
CrossRef ADS Google scholar
[37]
R. Barnett, S. Mukerjee, and J. E. Moore, Vortex lattice transitions in cyclic spinor condensates, Phys. Rev. Lett., 2008, 100(24): 240405
CrossRef ADS Google scholar
[38]
R. Barnett, A. Turner, and E. Demler, Classifying novel phases of spinor atoms, Phys. Rev. Lett., 2006, 97(18): 180412
CrossRef ADS Google scholar
[39]
H. Schmaljohann, M. Erhard, and J. Kronj, Dynamics of F = 2 spinor Bose–Einstein condensates, Phys. Rev. Lett., 2004, 92(4): 040402
CrossRef ADS Google scholar
[40]
D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. J. Miesner, J. Stenger, and W. Ketterle, Optical confinement of a Bose–Einstein condensate, Phys. Rev. Lett., 1998, 80(10): 2027
CrossRef ADS Google scholar
[41]
T. Ohmi and K. Machida, Bose–Einstein condensation with internal degrees of freedom in alkali atom gases, J. Phys. Soc. Jpn., 1998, 67: 1822
CrossRef ADS Google scholar
[42]
T. L. Ho, Spinor Bose condensates in optical traps, Phys. Rev. Lett., 1998, 81(4): 742
CrossRef ADS Google scholar
[43]
S. Ashhab and C. Lobo, External Josephson effect in Bose–Einstein condensates with a spin degree of freedom, Phys. Rev. A, 2002, 66(1): 013609
CrossRef ADS Google scholar
[44]
H. T. Ng, C. K. Law, and P. T. Leung, Quantum-correlated double-well tunneling of two-component Bose–Einstein condensates, Phys. Rev. A, 2003, 68(1): 013604
CrossRef ADS Google scholar
[45]
A. J. Leggett, Bose–Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys., 2001, 73(2): 307
CrossRef ADS Google scholar
[46]
O. E. Mustecaplioglu, M. Zhang, and L. You, Tunneling of condensate magnetization in a double-well potential, Phys. Rev. A, 2005, 71(5): 053616
CrossRef ADS Google scholar
[47]
O. E. Mustecaplioglu, W. Zhang, and L. You, Quantum dynamics of a spin-1 condensate in a double-well potential, Phys. Rev. A, 2007, 75(2): 023605
CrossRef ADS Google scholar
[48]
M. S. Chang, C. Hamley, M. Barrett, J. Sauer, K. Fortier, W. Zhang, L. You, and M. Chapman, Observation of spinor dynamics in optically trapped 87Rb Bose–Einstein condensates, Phys. Rev. Lett., 2004, 92(14): 140403
CrossRef ADS Google scholar
[49]
W. M. Liu, W. B. Fan, W. M. Zheng, J. Q. Liang, and S. T. Chui, Quantum tunneling of Bose–Einstein condensates in optical lattices under gravity, Phys. Rev. Lett., 2002, 88(17): 170408
CrossRef ADS Google scholar
[50]
J. Q. Liang and H. J. W. Muller-Kirsten, Bounces and the calculation of quantum tunneling effects, Phys. Rev. D, 1992, 45(8): 2963
CrossRef ADS Google scholar
[51]
B. P. Anderson and M. A. Kasevich, Macroscopic quantum interference from atomic tunnel arrays, Science, 1998, 282: 1686
CrossRef ADS Google scholar
[52]
F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Josephson junction arrays with Bose–Einstein condensates, Science, 2001, 293(5531): 843
CrossRef ADS Google scholar
[53]
U. Weiss, Quantum Dissipative Systems, Singapore: World Scientific, 1993
[54]
V.V. Ivanov, A. Alberti, M. Schioppo, G. Ferrari, M. Artoni, M. L. Chiofalo, and G. M. Tino, Coherent delocalization of atomic wave packets in driven lattice potentials, Phys. Rev. Lett., 2008, 100(4): 043602
CrossRef ADS Google scholar
[55]
C. F. Bharucha, K.W. Madison, P. P. Morrow, S. R. Wilkinson, B. Sundaram, and M. G. Raizen, Observation of atomic tunneling from an accelerating optical potential, Phys. Rev. A, 1997, 55(2): R857
CrossRef ADS Google scholar
[56]
L. S. Schulman, Techiques and Applications of Path Integration, New York: Wiley-Interscience, 1981
[57]
A.C. Ji, Q. Sun, X. C. Xie, and W. M. Liu, Josephson effect for photons in two weakly linked microcavities, Phys. Rev. Lett., 2009, 102(2): 023602
CrossRef ADS Google scholar
[58]
P. R. Eastham, and P. B. Littlewood, Bose condensation of cavity polaritons beyond the linear regime: The thermal equilibrium of a model microcavity, Phys. Rev. B, 2001, 64(23): 235101
CrossRef ADS Google scholar
[59]
S. Giovanazzi, A. Smerzi, and S. Fantoni, Josephson effects in dilute Bose–Einstein condensates, Phys. Rev. Lett., 2000, 84(20): 4521
CrossRef ADS Google scholar
[60]
S. Levy, E. Lahoud, I. Shomroni, and J. Steinhauer, The a.c. and d.c. Josephson effects in a Bose–Einstein condensate, Nature, 2007, 449(7162): 579
CrossRef ADS Google scholar
[61]
Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, Strong atom-field coupling for Bose–Einstein condensates in an optical cavity on a chip, Nature, 2007, 450(7167): 272
CrossRef ADS Google scholar
[62]
R. H. Dicke, Coherence in spontaneous radiation processes, Phys. Rev., 1954, 93(1): 99
CrossRef ADS Google scholar
[63]
F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, and T. Esslinger, Cavity QED with a Bose–Einstein condensate, Nature, 2007, 450(7167): 268
CrossRef ADS Google scholar
[64]
V. N. Popov and V. S. Yarunin, Collective Effects in Quantum Statistics of Radiation and Matter, Dordrecht: Kluwer Academic Publishers, 1988
CrossRef ADS Google scholar
[65]
M. J. Hartmann and G. S. L. Fernando, Strongly interacting polaritons in coupled arrays of cavities, Nat. Phys., 2006, 2(12): 849
CrossRef ADS Google scholar
[66]
A. Smerzi, S. Fantoni, S. Giovanazzi, and S. R. Shenoy, Quantum coherent atomic tunneling between two trapped Bose–Einstein condensates, Phys. Rev. Lett., 1997, 79(25): 4950
CrossRef ADS Google scholar
[67]
S. Raghavan, A. Smerzi, S. Fantoni, and S. R. Shenoy, Coherent oscillations between two weakly coupled Bose–Einstein condensates: Josephson effects, π-oscillations, and macroscopic quantum self-trapping, Phys. Rev. A, 1999, 59(1): 620
CrossRef ADS Google scholar
[68]
H. J. Kimble, Cavity Quantum Electrodynamics, edited by P. R. Berman, New York: Academic, 1994

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(524 KB)

Accesses

Citations

Detail

Sections
Recommended

/