Introduction to the CDEX experiment
Ke-Jun Kang, Jian-Ping Cheng, Jin Li, Yuan-Jing Li, Qian Yue, Yang Bai, Yong Bi, Jian-Ping Chang, Nan Chen, Ning Chen, Qing-Hao Chen, Yun-Hua Chen, Yo-Chun Chuang, Zhi Deng, Qiang Du, Hui Gong, Xi-Qing Hao, Hong-Jian He, Qing-Ju He, Xin-Hui Hu, Han-Xiong Huang, Teng-Rui Huang, Hao Jiang, Hau-Bin Li, Jian-Min Li, Jun Li, Xia Li, Xin-Ying Li, Xue-Qian Li, Yu-Lan Li, Heng-Ye Liao, Fong-Kay Lin, Shin-Ted Lin, Shu-Kui Liu, Ya-Bin Liu, Lan-Chun Lü, Hao Ma, Shao-Ji Mao, Jian-Qiang Qin, Jie Ren, Jing Ren, Xi-Chao Ruan, Man-Bin Shen, Man-Bin Shen, Lakhwinder Simgh, Manoj Kumar Singh, Arun Kumar Soma, Jian Su, Chang-Jian Tang, Chao-Hsiung Tseng, Ji-Min Wang, Li Wang, Qing Wang, Tsz-King Henry Wong, Xu-Feng Wang, Shi-Yong Wu, Wei Wu, Yu-Cheng Wu, Zhong-Zhi Xianyu, Hao-Yang Xing, Xun-Jie Xu, Yin Xu, Tao Xue, Li-Tao Yang, Song-Wei Yang, Nan Yi, Chun-Xu Yu, Hao Yu, Xun-Zhen Yu, Xiong-Hui Zeng, Zhi Zeng, Lan Zhang, Yun-Hua Zhang, Ming-Gang Zhao, Wei Zhao, Su-Ning Zhong, Jin Zhou, Zu-Ying Zhou, Jing-Jun Zhu, Wei-Bin Zhu, Xue-Zhou Zhu, Zhong-Hua Zhu
Introduction to the CDEX experiment
It is believed that weakly interacting massive particles (WIMPs) are candidates for dark matter (DM) in our universe which come from outer space and might interact with the standard model (SM) matter of our detectors on the earth. Many collaborations in the world are carrying out various experiments to directly detect DM particles. China Jinping underground Laboratory (CJPL) is the deepest underground laboratory in the world and provides a very promising environment for DM search. China Dark matter EXperiment (CDEX) is going to directly detect the WIMP flux with high sensitivity in the low WIMP-mass region. Both CJPL and CDEX have achieved a remarkable progress in recent three years. CDEX employs a point-contact germanium (PCGe) semi-conductor detector whose energy threshold is less than 300 eV. In this report we present the measurement results of muon flux, monitoring of radioactivity and radon concentration carried out in CJPL, as well describing the structure and performance of the 1 kg-PCGe detector in CDEX-1 and 10 kgPCGe detector array in CDEX-10 including the detectors, electronics, shielding and cooling systems. Finally we discuss the physics goals of CDEX-1, CDEX-10 and the future CDEX-1T experiments.
China Dark matter EXperiment (CDEX) / dark matter / poit-contact germanium detector / China Jinping underground Laboratory (CJPL)
[1] |
F. Zwicky, On the masses of nebulae and of clusters of nebulae, Astrophys. J., 1937, 86: 217
CrossRef
ADS
Google scholar
|
[2] |
V. Rubin and W. K. J. Ford, Rotation of the Andromeda nebula from a spectroscopic survey of emission regions, Astrophys. J., 1970, 159: 379
CrossRef
ADS
Google scholar
|
[3] |
V. Rubin, W. K. J. Ford, and N. Thonnard, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R= 4 kpc/ to UGC 2885 /R= 122 kpc/, Astrophys. J., 1980, 238: 471
CrossRef
ADS
Google scholar
|
[4] |
V. Rubin, D. Burstein, W. K. J. Ford, and N. Thonnard, Rotation velocities of 16 SA galaxies and a comparison of Sa, Sb, and SC rotation properties, Astrophys. J., 1985, 289: 81
CrossRef
ADS
Google scholar
|
[5] |
D. Clowe, M. Bradac, A. H. Gonzalez, M. Markevitch, S. W. Randall, C. Jones, and D. Zaritsky, A direct empirical proof of the existence of dark matter, Astrophys. J., 2006, 648(2): L109
CrossRef
ADS
Google scholar
|
[6] |
J. Beringer,
CrossRef
ADS
Google scholar
|
[7] |
Planck Collaboration, Planck 2013 results. XVI. Cosmological parameters, arXiv: 1303.5076v1, 2013
|
[8] |
V. Trimble, Existence and nature of dark matter in the universe, Annu. Rev. Astron. Astrophys., 1987, 25(1): 425
CrossRef
ADS
Google scholar
|
[9] |
G. Jungman, M. Kamionkowski, and K. Griest, Supersymmetric dark matter, Phys. Rep., 1996, 267(5–6): 195
CrossRef
ADS
Google scholar
|
[10] |
L. Bergstrom, Dark matter candidates, New J. Phys., 2009, 11(10): 105006
CrossRef
ADS
Google scholar
|
[11] |
J. L. Feng, Dark matter candidates from particle physics and methods of detection, arXiv: 1003.0904, 2010
|
[12] |
R. J. Gaitskell, Direct detection of dark matter, Ann. Rev. Nucl. Part. Sci., 2004, 54(1): 315
CrossRef
ADS
Google scholar
|
[13] |
X.G. He, H. C. Tsai, T. Li, and X. Q. Li, Scalar darkmatter effects in Higgs and top quark decays, Mod. Phys. Lett. A, 2007, 22(25n28): 2121
|
[14] |
X. He, T. Li, X. Q. Li, J. Tandean, and H. C. Tsai, Constraints on scalar dark matter from direct experimental searches, Phys. Rev. D, 2009, 79(2): 023521
CrossRef
ADS
Google scholar
|
[15] |
Beylyaev, M. T. Frandsen, S. Sarkar, and F. Sannino, Mixed dark matter from Technicolor, Phys. Rev. D, 2011, 83(1): 015007, and the references therein
CrossRef
ADS
Google scholar
|
[16] |
H. P. An, S. L. Chen, R. N. Mohapatra, S. Nussinov, and Y. Zhang, Energy dependence of direct detection cross-section for asymmetric mirror dark matter, Phys. Rev. D, 2010, 82: 023533, arXiv: 1004.3296
|
[17] |
J.-W. Cui, H.-J. He, L.-C. Lu, and F.-R. Yin, Spontaneous mirror parity violation, common origin of matter and dark matter, and the LHC Signatures, Phys. Rev. D, 2012, 85: 096003, arXiv: 1110.6893
|
[18] |
M. Gilloz, A. von Manteuffel, P. Schwaller, and D. Wyler, The little skyrmion: new dark matter for little Higgs models, J. High Energy Phys., 2011, 1103: 48, and references therein, arXiv: 1012.5288v2
|
[19] |
J. Lavalle, J. M. Alimi, and A. Fuözfa, Cosmic ray positron excess: Is the dark matter solution a good bet? AIP Conf. Proc., 2010, 24: 398
|
[20] |
R. Yang, J. Chang, and J. Wu, A possible explanation for the electron/positron excess of ATIC/PAMELA, Res. Astro. Astrophys., 2010, 10(1): 39, and references therein
|
[21] |
M. Amenomori,
|
[22] |
M. Aguilar,
|
[23] |
K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’ngelo, H. L. He, A. Incicchitti, H. H. Kuang, J. M. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, and Z. P. Ye, First results from DAMA/LIBRA and the combined results with DAMA/NaI, Eur. Phys. J. C, 2008, 56(3): 333
|
[24] |
K. Bernabei, P. Belli, F. Cappella, R. Cerulli, C. J. Dai, A. d’ngelo, H. L. He, A. Incicchitti, H. H. Kuang, X. H. Ma, F. Montecchia, F. Nozzoli, D. Prosperi, X. D. Sheng, R. G. Wang, and Z. P. Ye, New results from DAMA/LIBRA, Eur. Phys. J. C, 2010, 67(1–2): 39
|
[25] |
C. Aalseth, P. S. Barbeau, N. S. Bowden, B. Cabrera Palmer,
|
[26] |
P. Brink, Z. Ahmed, D. S. Akerib, C. N. Bailey,
CrossRef
ADS
Google scholar
|
[27] |
G. Angloher,
|
[28] |
J. Angle,
CrossRef
ADS
Pubmed
Google scholar
|
[29] |
R. Agnese,
|
[30] |
M. T. Frandsen, F. Kahlhoefer, C. McCabe, S. Sarkar, and K. Schmidt-Hoberg, The unbearable lightness of being: CDMS versus XENON, arXiv: 1304.6066v1, 2013
|
[31] |
X. G. He and J. Tandean, Low-mass dark-matter hint from CDMS II, Higgs boson at LHC, and Darkon models, arXiv: 1304.6058v1, 2013
|
[32] |
E. Aprile,
|
[33] |
J. Angle,
CrossRef
ADS
Google scholar
|
[34] |
M. T. Ressell, M. Aufderheide, S. Bloom, K. Griest, G. Mathews, and D. Resler, Nuclear shell model calculations of neutralino-nucleus cross-sections for 29Si and 73Ge, Phys. Rev. D, 1993, 48(12): 5519
CrossRef
ADS
Pubmed
Google scholar
|
[35] |
G. Griest, Cross-sections, relic abundance, and detection rates for neutralino dark matter, Phys. Rev. D, 1988, 15(8): 2357
CrossRef
ADS
Google scholar
|
[36] |
C. L. Shan, Effects of residue background events in direct dark matter detection experiments on the estimation of the spin-independent WIMP-nucleon coupling, arXiv: 1103.4049v2, 2011
|
[37] |
C. L. Shan, Estimating the spin-independent WIMP-nucleon coupling from direct dark matter detection data, arXiv: 1103.0481v2, 2011
|
[38] |
V. Barger, W.-Y. Keung, and G. Shaughnessy, Spin dependence of dark matter scattering, Phys. Rev. D, 2008, 78: 056007, arXiv: 0806.1962
CrossRef
ADS
Google scholar
|
[39] |
Y. Tzeng and T. T. S. Kuo, Dark matter-nucleus scattering, 14th International Conference on Particles and Nuclei (PANIC 96): C96-05-22, 479
|
[40] |
M. T. Ressell, M. Aufderheide, S. Bloom, K. Griest, G. Mathews, and D. Resler, Nuclear shell model calculations of neutralino-nucleus cross-sections for 29Si and 73Ge, Phys. Rev. D, 1993, 48(12): 5519
CrossRef
ADS
Google scholar
|
[41] |
M. T. Ressell and D. J. Dean, Spin-dependent neutralinonucleus scattering for A127 nuclei, Phys. Rev. C, 1997, 56(1): 535
CrossRef
ADS
Google scholar
|
[42] |
J. Engel, S. Pittel, and P. Vogel, Nuclear physics of dark matter detection, Int. J. Mod. Phys. E, 1992, 1: 1
CrossRef
ADS
Google scholar
|
[43] |
J. Engel, Nuclear form factors for the scattering of weakly interacting massive particles, Phys. Lett. B, 1991, 264(1–2): 114
CrossRef
ADS
Google scholar
|
[44] |
Q. Yue, J. P. Cheng, Y. J. Li, J. Li, and Z. J. Wang, Detection of WIMPs using low threshold HPGe detector, High Energy Physics and Nuclear Physics, 2004, 28(8): 877 (in Chinese)
|
[45] |
X. Li, Q. Yue, Y. J. Li, J. Li,
|
[46] |
S. T. Lin,
CrossRef
ADS
Google scholar
|
[47] |
C. E. Aalseth,
CrossRef
ADS
Google scholar
|
[48] |
C. E. Aalseth,
CrossRef
ADS
Google scholar
|
[49] |
Majorana Collaboration, http://www.npl.washington.edu/ majorana/
|
[50] |
GERDA Collaboration, http://www.mpi-hd.mpg.de/gerda/
|
[51] |
K. J. Kang, J. P. Cheng, Y. H. Chen, Y. J. Li, M. B. Shen, S. Y. Wu, and Q. Yue, Status and prospects of a deep underground laboratory in China, J. Phys.: Conf. Ser., 2010, 203(1): 012028
CrossRef
ADS
Google scholar
|
[52] |
D. Normile, Chinese scientists hope to make deepest, darkest dreams come true, Science, 2009, 324(5932): 1246
CrossRef
ADS
Pubmed
Google scholar
|
[53] |
G. Heusser, Low-radioactivity background techniques, Ann. Rev. Nucl. Part. Sci., 1995, 45(1): 543
CrossRef
ADS
Google scholar
|
[54] |
Canberra, http://www.canberra.com/
|
[55] |
Chinalco Luoyang Copper Co, Ltd, http://www.lycopper.cn
|
[56] |
ORTEC, http://www.ortec-online.com
|
[57] |
Y. C. Wu,
|
[58] |
Saphymo, http://saphymo.de
|
[59] |
P. N. Luke, F. S. Goulding, N. W. Madden, and R. H. Pehl, Low capacitance large volume shaped-.eld germanium detector, IEEE Trans. Nucl. Sci., 1989, 36(1): 926
CrossRef
ADS
Google scholar
|
[60] |
P. S. Barbeau, J. I. Collar, and O. Tench, Large-mass ultralow noise germanium detectors: performance and applications in neutrino and astroparticle physics, J. Cosmol. Astropart. Phys., 2007, 09: 009
|
[61] |
AMPTEK, http://www.amptek.com
|
[62] |
TEK, http://www.tek.com
|
[63] |
CDMS Collaboration, http://cdms.berkeley.edu
|
[64] |
XENON Collaboration, http://xenon.astro.columbia.edu
|
[65] |
CRESST Collaboration, http://www.cresst.de
|
[66] |
C. Aalseth, P. S. Barbeau, J. Colaresi, J. I. Collar,
CrossRef
ADS
Google scholar
|
[67] |
M. G. Marino, Dark matter physics with P-type pointcontact germanium detectors: Extending the physics reach of the Majorana experiment, Ph.D. Dissertation, University of Washington, 2010
|
[68] |
From a talk given by J. F. Wilkerson in Tsinghua University in 2011
|
/
〈 | 〉 |