
Hierarchical cluster-tendency analysis of the group structure in the foreign exchange market
Xin-Ye Wu, Zhi-Gang Zheng
Front. Phys. ›› 0
Hierarchical cluster-tendency analysis of the group structure in the foreign exchange market
A hierarchical cluster-tendency (HCT) method in analyzing the group structure of networks of the global foreign exchange (FX) market is proposed by combining the advantages of both the minimal spanning tree (MST) and the hierarchical tree (HT). Fifty currencies of the top 50 World GDP in 2010 according to World Bank’s database are chosen as the underlying system. By using the HCT method, all nodes in the FX market network can be “colored” and distinguished. We reveal that the FX networks can be divided into two groups, iffe., the Asia-Pacific group and the Pan-European group. The results given by the hierarchical cluster-tendency method agree well with the formerly observed geographical aggregation behavior in the FX market. Moreover, an oil-resource aggregation phenomenon is discovered by using our method. We find that gold could be a better numeraire for the weekly-frequency FX data.
foreign-exchange market / hierarchical cluster-tendency method / hierarchical tree / minimum spanning tree
[1] |
R. N. Mantegna, Hierarchical structure in financial markets, Eur. Phys. J. B, 1999, 11(1): 193
CrossRef
ADS
Google scholar
|
[2] |
D. M. Song, Z. Q. Jiang, and W. X. Zhou, Statistical properties of world investment networks, Physica A, 2009, 388(12): 2450
CrossRef
ADS
Google scholar
|
[3] |
S. Lee, M. J. Kim, S. Y. Lee, S. Y. Kim, and J. H. Ban, The effect of the subprime crisis on the credit risk in global scale, Physica A, 2013, 392(9): 2060
CrossRef
ADS
Google scholar
|
[4] |
S. Ahn, J. Choi, G. Lim, K. Y. Cha, S. Kim, and K. Kim, Identifying the structure of group correlation in the Korean financial market, Physica A, 2011, 390(11): 1991
CrossRef
ADS
Google scholar
|
[5] |
S. Y. Lee, D. I. Hwang, M. J. Kim, I. G. Koh, and S. Y. Kim, Cross-correlations in volume space: Differences between buy and sell volumes, Physica A, 2011, 390(5): 837
CrossRef
ADS
Google scholar
|
[6] |
W. S. Jung, S. Chae, J. S. Yang, and H. T. Moon, Characteristics of the Korean stock market correlations, Physica A, 2006, 361(1): 263
CrossRef
ADS
Google scholar
|
[7] |
A. Garas and P. Argyrakis, Correlation study of the Athens stock exchange, Physica A, 2007, 380: 399
CrossRef
ADS
Google scholar
|
[8] |
P. Caraiani, Characterizing emerging European stock markets through complex networks: From local properties to self-similar characteristics, Physica A, 2012, 391(13): 3629
CrossRef
ADS
Google scholar
|
[9] |
T. Heimo, G. Tibély, J. Saramäki, K. Kaski, and J. Kertész, Spectral methods and cluster structure in correlation-based networks, Physica A, 2008, 387(23): 5930
CrossRef
ADS
Google scholar
|
[10] |
S. Battiston, Inner structure of capital control networks, Physica A, 2004, 338(1–2): 107
CrossRef
ADS
Google scholar
|
[11] |
M. A. Djauhari, A robust filter in stock networks analysis, Physica A, 2012, 391(20): 5049
CrossRef
ADS
Google scholar
|
[12] |
T. Heimo, J. Saramäki, J. P. Onnela, and K. Kaski, Spectral and network methods in the analysis of correlation matrices of stock returns, Physica A, 2007, 383(1): 147
CrossRef
ADS
Google scholar
|
[13] |
G. Tibély, J. P. Onnela, J. Saramäki, K. Kaski, and J. Kertész, Spectrum, intensity and coherence in weighted networks of a financial market, Physica A, 2006, 370(1): 145
CrossRef
ADS
Google scholar
|
[14] |
B. M. Tabak, T. R. Serra, and D. O. Cajueiro, Topological properties of stock market networks: The case of Brazil, Physica A, 2010, 389(16): 3240
CrossRef
ADS
Google scholar
|
[15] |
G. Bonanno, G. Caldarelli, F. Lillo, S. Micciche, N. Vandewalle, and R. N. Mantegna, Networks of equities in financial markets, Eur. Phys. J. B, 2001, 38: 363
CrossRef
ADS
Google scholar
|
[16] |
L. Sandoval Jr, Pruning a minimum spanning tree, Physica A, 2012, 391(8): 2678
|
[17] |
W. J. Ma, C. K. Hu, and R. E. Amritkar, Stochastic dynamical model for stock-stock correlations, Phys. Rev. E, 2004, 70(2): 026101
|
[18] |
J. P. Onnela, A. Chakraborti, K. Kaski, and J. Kertész, Dynamic asset trees and Black Monday, Physica A, 2003, 324(1–2): 247
|
[19] |
J. P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, and A. Kanto, Dynamics of market correlations: Taxonomy and portfolio analysis, Phys. Rev. E, 2003, 68(5): 056110
|
[20] |
J. P. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, and A. Kanto, Asset trees and asset graphs in financial markets, Phys. Scr., 2003, T106(1): 48
|
[21] |
G. Bonnanno, G. Caldarelli, F. Lillo, and R. N. Mantegna, Topology of correlation-based minimal spanning trees in real and model markets, Phys. Rev. E, 2003, 68(4): 046130
|
[22] |
M. H. Jensen, A. Johansen, F. Petroni, and I. Simonsen, Inverse statistics in the foreign exchange market, Physica A, 2004, 340(4): 678
|
[23] |
M. McDonald, O. Suleman, S. Williams, S. Howison, and N. F. Johnson, Impact of unexpected events, shocking news and rumours on foreign exchange market dynamics, Phys. Rev. E, 2008, 77(4): 046110
|
[24] |
M. McDonald, O. Suleman, S. Williams, S. Howison, and N. F. Johnson, Detecting a currency’s dominance or dependence using foreign exchange network trees, Phys. Rev. E, 2005, 72(4): 046106
|
[25] |
S. Drozdz, J. Kwapien, P. Oswiecimka, and R. Rak, The foreign exchange market: return distributions, multifractality, anomalous multifractality and the Epps effect, New J. Phys., 2010, 12(10): 105003
|
[26] |
W. Jang, J. Lee, and W. Chang, Currency crises and the evolution of foreign exchange market evidence from minimum spanning tree, Physica A, 2011, 390(4): 707
|
[27] |
M. Keskin, B. Deviren, and Y. Kocakaplan, Topology of the correlation networks among major currencies using hierarchical structure methods, Physica A, 2011, 390(4): 719
|
[28] |
G. J. Wang, C. Xie, F. Han, and B. Sun, Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree, Physica A, 2012, 391(16): 4136
|
[29] |
J. Kwapien, S. Gworek, S. Drozdz, and A. Gorski, Analysis of a network structure of the foreign currency exchange market, J. Econ. Interact. Coord, 2009, 4(1): 55
CrossRef
ADS
Google scholar
|
[30] |
R. N. Mantegna and H. Eugene Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge: Cambridge University Press, 2010
Pubmed
|
[31] |
E. Kantar, B. Deviren, and M. Keskin, Hierarchical structure of Turkey’s foreign trade, Physica A, 2011, 390(20): 3454
CrossRef
ADS
Google scholar
|
[32] |
Y. Kocakaplan, B. Deviren, and M. Keskin, Hierarchical structures of correlations networks among Turkey’s exports and imports by currencies, Physica A, 2012, 391(24): 6509
CrossRef
ADS
Google scholar
|
[33] |
http://data.WorldBank.org/
|
[34] |
http://www.oanda.com/currency/historical-rates/
|
[35] |
M. J. Naylora, L. C. Rose, and B. J. Moyle, Topology of foreign exchange markets using hierarchical structure methods, Physica A, 2007, 382(1): 199
CrossRef
ADS
Google scholar
|
[36] |
R. Rammel, G. Toulouse, and M. A. Virasoro, Ultrametricity for physicists, Rev. Mod. Phys., 1986, 58(3): 765
CrossRef
ADS
Google scholar
|
[37] |
J. P. Onnela and M. Sc, Taxonomy of Financial Assets, Thesis, Helsinki University of Technology, 2002
|
[38] |
D. M. Song, M. Tumminello, W. X. Zhou, and R. N. Mantegna, Evolution of worldwide stock markets, correlation structure, and correlation-based graphs, Phys. Rev. E, 2011, 84(2): 026108
CrossRef
ADS
Pubmed
Google scholar
|
[39] |
M. Eryiğit and R. Eryiğit, Network structure of crosscorrelations among the world market indices, Physica A, 2009, 388(17): 3551
CrossRef
ADS
Google scholar
|
[40] |
G. Bonanno, N. Vandewalle, and R. N. Mantegna, Taxonomy of stock market indices, Phys. Rev. E, 2000, 62(6): R7615
CrossRef
ADS
Pubmed
Google scholar
|
[41] |
R. Coelho, C. G. Gilmore, B. Lucey, P. Richmond, and S. Hutzler, The evolution of interdependence in world equity markets – Evidence from minimum spanning trees, Physica A, 2007, 376: 455
CrossRef
ADS
Google scholar
|
[42] |
E. Kantar, B. Deviren, and M. Keskin, Hierarchical structure of Turkey’s foreign trade, Physica A, 2011, 390(20): 3454
CrossRef
ADS
Google scholar
|
[43] |
Y. Kocakaplan, Sğan, B. Deviren, and M. Keskin, Correlations, hierarchies and networks of the world’s automotive companies, Physica A, 2013, 392(12): 2736
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |