Analytical solutions for the spin-1 Bose–Einstein condensate in a harmonic trap

Yu-Ren Shi (石玉仁) , Xue-Ling Wang (王雪玲) , Guang-Hui Wang (王光辉) , Cong-Bo Liu (刘丛波) , Zhi-Gang Zhou (周志刚) , Hong-Juan Yang(杨红娟)

Front. Phys. ›› 2013, Vol. 8 ›› Issue (3) : 319 -327.

PDF (421KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (3) : 319 -327. DOI: 10.1007/s11467-013-0332-x
RESEARCH ARTICLE

Analytical solutions for the spin-1 Bose–Einstein condensate in a harmonic trap

Author information +
History +
PDF (421KB)

Abstract

The homotopy analysis method and Galerkin spectral method are applied to find the analytical solutions for the Gross–Pitaevskii equations, a set of nonlinear Schrödinger equation used in simulation of spin-1 Bose–Einstein condensates trapped in a harmonic potential. We investigate the one-dimensional case and get the approximate analytical solutions successfully. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are in agreement well with each other when the atomic interaction is weakly. We also find a class of exact solutions for the stationary states of the spin-1 system with harmonic potential for a special case.

Keywords

spin-1 Bose–Einstein condensate / Gross–Pitaevskii equation / homotopy analysis method / analytical solution

Cite this article

Download citation ▾
Yu-Ren Shi (石玉仁), Xue-Ling Wang (王雪玲), Guang-Hui Wang (王光辉), Cong-Bo Liu (刘丛波), Zhi-Gang Zhou (周志刚), Hong-Juan Yang(杨红娟). Analytical solutions for the spin-1 Bose–Einstein condensate in a harmonic trap. Front. Phys., 2013, 8(3): 319-327 DOI:10.1007/s11467-013-0332-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Stenger, S. Inouye, D. M. Stamper-Kurn, H. J. Miesner, A. P. Chikkatur, and W. Ketterle, Nature, 1998, 396(6709): 345

[2]

D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H. J. Miesner, J. Stenger, and W. Ketterle, Phys. Rev. Lett., 1998, 80(10): 2027

[3]

M. S. Chang, C. D. Hamley, M. D. Barrett, J. A. Sauer, K. M. Fortier, W. Zhang, L. You, and M. S. Chapman, Phys. Rev. Lett., 2004, 92(14): 140403

[4]

A. Sinatra, J. C. Dornstetter, and Y. Castin, Front. Phys., 2012, 7(1): 86

[5]

X. W. Guan, Front. Phys., 2012, 7(1): 8

[6]

T. L. Ho, Phys. Rev. Lett., 1998, 81(4): 742

[7]

T. Ohmi and K. Machida, J.Phys. Soc. Jpn., 1998, 67(6): 1822

[8]

T. Isoshima, K. Machida, and T. Ohmi,Phys. Rev. A, 1999, 60(6): 4857

[9]

P. G. Kevrekidis, G. Theocharis, D. J. Frantzeskakis, and B. A. Malomed, Phys. Rev. Lett., 2003, 90(23): 230401

[10]

N. N.Klausen, J. L. Bohn, and C. H. Greene, Phys. Rev. A, 2001, 64(5): 053602

[11]

E. G. M. van Kempen, S. J. J. M. F. Kokkelmans, D. J. Heinzen, and B. J. Verhaar, Phys. Rev. Lett., 2002, 88(9): 093201

[12]

H. E. Nistazakis, D. J. Frantzeskakis, P. G.Kevrekidis, B. A. Malomed, and R. Carretero-Gonzlez, Phys. Rev. A, 2008, 77(3): 033612

[13]

E. J. Mueller, Phys. Rev. A, 2004, 69(3): 033606

[14]

J. Ieda, T. Miyakawa, and M. Wadati, Laser Phys., 2005, 16(4): 678

[15]

B. J. Dabrowska-Wüster, E. A. Ostrovskaya, T. J. Alexander, and Y. S. Kivshar, Phys. Rev. A, 2007, 75(2): 023617

[16]

P. Szańkowski, M. Trippenbach, E. Infeld, and G. Rowlands, Phys. Rev. A, 2011, 83: 013626

[17]

R. Barnett, A. Turner, and E. Demler, Phys. Rev. Lett., 2006, 97(18): 180412

[18]

H. Saito and M. Ueda, Phys. Rev. A, 2005, 72(2): 023610

[19]

W. Z. Bao and Y. Z. Zhang, Methods Appl. Anal., 2010, 17: 49

[20]

W. Z. Bao and F. Y. Lim, SIAM J. Sci. Comput., 2008, 30(4): 1925

[21]

D. S. Wang, S. W. Song, B. Xiong, and W. M. Liu, Phys. Rev. A, 2011, 84(5): 053607

[22]

D. S. Wang, X. H. Hu, and W. M. Liu, Phys. Rev. A, 2010, 82(2): 023612

[23]

D. S. Wang, X. H. Hu, J. P. Hu, and W. M. Liu, Phys. Rev. A, 2010, 81(2): 025604

[24]

S. J. Liao, Beyond Perturbation: Introduction to Homotopy Analysis Method, Boca Raton: Chapman & Hall/CRC Press, 2003

[25]

S. J. Liao, Homotopy Analysis Method in Nonlinear Differential Equations, Beijing: Springer & Higher Education Press, 2012

[26]

S. J. Liao, PhD Thesis, Shanghai Jiao Tong University, 1992

[27]

S. J. Liao, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(8): 2003

[28]

S. J. Liao, Commun. Nonlinear Sci. Numer. Simul., 2009, 14(4): 983

[29]

Y. Cheng and S. J. Liao,Commun. Nonlinear Sci. Numer. Simul., 2006, 47: 75

[30]

S. J. Liao, Int. J. Non-linear Mech., 2004, 39(2): 271

[31]

S. J. Liao, Commun. Nonlinear Sci. Numer. Simul., 2010, 15(8): 2003

[32]

Y. L. Zhao, Z. L. Lin, Z. Liu, and S. J. Liao, Appl. Math. Comput., 2012, 218(17): 8363

[33]

M. Turkyilmazoglu, Appl. Math. Lett., 2010, 23(10): 1226

[34]

M. Turkyilmazoglu, Int. J. Mech. Sci., 2010, 52(12): 1735

[35]

M. Turkyilmazoglu, Comput. Fluids, 2010, 39(5): 793

[36]

M. Turkyilmazoglu, Int. J. Therm. Sci., 2011, 50(5): 831

[37]

M. Turkyilmazoglu, Int. J. Nonlinear Sci. Numer. Simul., 2011, 12(1-8): 9

[38]

M. Turkyilmazoglu, Commun. Nonlinear Sci. Numer. Simul., 2012, 17(11): 4097

[39]

Y. R. Shi, X. J. Xu, Z. X.Wu,Y. H. Wang, H. J. Yang, W. S. Duan, and K. P., Acta Phys. Sin., 2006, 55: 1555 (in Chinese)

[40]

Y. R. Shi and H. J. Yang,Acta Phys. Sin., 2010, 59: 67 (in Chinese)

[41]

S. S. Motsa, P. Sibanda, and S. Shateyi,Commun. Nonl. Sci. Numer. Simulat., 2010, 15(9): 2293

[42]

P. Sibanda, S. S. Motsa, and Z. Makukula, Int. J. Numer. Method. H., 2012, 22(1): 4

[43]

C.M. Dion and E. Cancès, Phys. Rev. E, 2003, 67(4): 046706

[44]

C. M. Dion and E. Cancès, Comput. Phys. Commun., 2007, 177(10): 787

[45]

S. B. Papp, J. M. Pino, and C. E. Wieman, Phys. Rev. Lett., 2008, 101(4): 040402

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (421KB)

993

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/