Role of rotational state-selected for nonadiabatic alignment: OCS molecules in femtosecond laser fields

Rui-Han Zhu, Chun-Cheng Wang, Si-Zuo Luo, Xue Yang, Mei-Xia Zhang, Fu-Chun Liu, Da-Jun Ding

PDF(278 KB)
PDF(278 KB)
Front. Phys. ›› 2013, Vol. 8 ›› Issue (2) : 236-240. DOI: 10.1007/s11467-013-0323-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Role of rotational state-selected for nonadiabatic alignment: OCS molecules in femtosecond laser fields

Author information +
History +

Abstract

Nonadiabatic alignment by intense nonresonant laser fields is a versatile technique to manipulate the spatial direction of molecules. By solving the time-dependent Schrödinger equation numerically the degree of alignment of the molecules initially in different rotational state are calculated and the results show that the degree of alignment strongly depends on the initial rotational state. Thus, the present study indicates that, for obtaining a high degree of alignment for molecules, appropriate selection of molecular rotational states is necessary.

Keywords

nonadiabatic alignment / rotational state-selection / linear triatomic molecule

Cite this article

Download citation ▾
Rui-Han Zhu, Chun-Cheng Wang, Si-Zuo Luo, Xue Yang, Mei-Xia Zhang, Fu-Chun Liu, Da-Jun Ding. Role of rotational state-selected for nonadiabatic alignment: OCS molecules in femtosecond laser fields. Front. Phys., 2013, 8(2): 236‒240 https://doi.org/10.1007/s11467-013-0323-y

References

[1]
I. V. Litvinyuk, K. F. Lee, P. W. Dooley, D. M. Rayner, D. M. Villeneuve, and P. B. Corkum, Phys. Rev. Lett., 2003, 90(23): 233003
CrossRef ADS Google scholar
[2]
R. Murray, M. Spanner, S. Patchkovskii, and M. Y. Ivanov, Phys. Rev. Lett., 2011, 106(17): 173001
CrossRef ADS Google scholar
[3]
Q. Wang, D. Wu, M. Jin, F. Liu, F. Hu, X. Cheng, H. Liu, Z. Hu, D. Ding, H. Mineo, Y. A. Dyakov, A. M. Mebel, S. D. Chao, and S. H. Lin, J. Chem. Phys., 2008, 129(20): 204302
CrossRef ADS Google scholar
[4]
S. Patchkovskii, Z. X. Zhao, T. Brabec, and D. M. Villeneuve, J. Chem. Phys., 2007, 126(11): 114306
CrossRef ADS Google scholar
[5]
T. Kanai, S. Minemoto, and H. Sakai, Nature, 2005, 435(7041): 470
CrossRef ADS Google scholar
[6]
A. Abdurrouf and F. H. M. Faisal, Phys. Rev. A, 2009, 79(2): 023405
CrossRef ADS Google scholar
[7]
P. R. Brooks, Science, 1976, 193(4247): 11
CrossRef ADS Google scholar
[8]
T. P. Rakitzis, A. J. van den Brom, and M. H. M. Janssen, Science, 2004, 303(5665): 1852
CrossRef ADS Google scholar
[9]
B. Friedrich and D. Herschbach, Phys. Rev. Lett., 1995, 74(23): 4623
CrossRef ADS Google scholar
[10]
B. Friedrich and D. Herschbach, J. Phys. Chem., 1995, 99(42): 15686
CrossRef ADS Google scholar
[11]
H. Sakai, C. P. Safvan, J. J. Larsen, K. M. Hilligsϕe, K. Hald, and H. Stapelfeldt, J. Chem. Phys., 1999, 110(21): 10235
CrossRef ADS Google scholar
[12]
T. Seideman, Phys. Rev. Lett., 1999, 83(24): 4971
CrossRef ADS Google scholar
[13]
N. Xu, C. Wu, J. Huang, Z. Wu, Q. Liang, H. Yang, and Q. Gong, Opt. Express, 2006, 14(12): 4992
CrossRef ADS Google scholar
[14]
T. Seideman and E. Hamilton, Adv. At. Mol. Opt. Phys., 2006, 52: 289
CrossRef ADS Google scholar
[15]
I. Sh. Averbukh and R. Arvieu, Phys. Rev. Lett., 2001, 87(16): 163601
CrossRef ADS Google scholar
[16]
C. Z. Bisgaard, M. D. Poulsen, E. Péronne, S. S. Viftrup, and H. Stapelfeldt, Phys. Rev. Lett., 2004, 92(17): 173004
CrossRef ADS Google scholar
[17]
J. P. Cryan, P. H. Bucksbaum, and R. N. Coffee, Phys. Rev. A, 2009, 80(6): 063412
CrossRef ADS Google scholar
[18]
E. Hertz, A. Rouzée, S. Guérin, B. Lavorel, and O. Faucher, Phys. Rev. A, 2007, 75(3): 031403
CrossRef ADS Google scholar
[19]
A. Rouzée, E. Hertz, B. Lavorel, and O. Faucher, J. Phys. At. Mol. Opt. Phys., 2008, 41(7): 074002
CrossRef ADS Google scholar
[20]
T. Suzuki, Y. Sugawara, S. Minemoto, and H. Sakai, Phys. Rev. Lett., 2008, 100(3): 033603
CrossRef ADS Google scholar
[21]
K. H. Kramer and R. B. Bernstein, J. Chem. Phys., 1965, 42(2): 767
CrossRef ADS Google scholar
[22]
D. H. Parker and R. B. Bernstein, Annu. Rev. Phys. Chem., 1989, 40(1): 561
CrossRef ADS Google scholar
[23]
F. C. Liu, M. X. Jin, and D. J. Ding, Chin. Phys. Lett., 2006, 23(5): 1165
CrossRef ADS Google scholar
[24]
F. C. Liu, M. X. Jin, G. Xin, and D. J. Ding, Chin. Phys. Lett., 2006, 23(2): 344
CrossRef ADS Google scholar
[25]
O. Ghafur, A. Rouzée, A. Gijsbertsen, W. K. Siu, S. Stolte, and M. J. J. Vrakking, Nat. Phys., 2009, 5(4): 289
CrossRef ADS Google scholar
[26]
A. Rouzée, A. Gijsbertsen, O. Ghafur, O. M. Shir, T. Bäck, S. Stolte, and M. J. J. Vrakking, New J. Phys., 2009, 11(10): 105040
CrossRef ADS Google scholar
[27]
J. H. Nielsen, P. Simesen, C. Z. Bisgaard, H. Stapelfeldt, F. Filsinger, B. Friedrich, G. Meijer, and J. Küpper, Phys. Chem. Chem. Phys., 2011, 13(42): 18971
CrossRef ADS Google scholar
[28]
A. S. Meijer, Y. Zhang, D. H. Parker, W. J. van der Zande, A. Gijsbertsen, and M. Vrakking, Phys. Rev. A, 2007, 76(2): 023411
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(278 KB)

Accesses

Citations

Detail

Sections
Recommended

/