Detection of explosives with laser-induced breakdown spectroscopy

Qian-Qian Wang, Kai Liu, Hua Zhao, Cong-Hui Ge, Zhi-Wen Huang

PDF(488 KB)
PDF(488 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (6) : 701-707. DOI: 10.1007/s11467-012-0272-x
REVIEW ARTICLE
REVIEW ARTICLE

Detection of explosives with laser-induced breakdown spectroscopy

Author information +
History +

Abstract

Our recent work on the detection of explosives by laser-induced breakdown spectroscopy (LIBS) is reviewed in this paper. We have studied the physical mechanism of laser-induced plasma of an organic explosive, TNT. The LIBS spectra of TNT under single-photon excitation are simulated using MATLAB. The variations of the atomic emission lines intensities of carbon, hydrogen, oxygen, and nitrogen versus the plasma temperature are simulated too. We also investigate the time-resolved LIBS spectra of a common inorganic explosive, black powder, in two kinds of surrounding atmospheres, air and argon, and find that the maximum value of the O atomic emission line SBR of black powder occurs at a gate delay of 596 ns. Another focus of our work is on using chemometic methods such as principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) to distinguish the organic explosives from organic materials such as plastics. A PLS-DA model for classification is built. TNT and seven types of plastics are chosen as samples to test the model. The experimental results demonstrate that LIBS coupled with the chemometric techniques has the capacity to discriminate organic explosive from plastics.

Keywords

laser-induced breakdown spectroscopy (LIBS) / Raman spectroscopy / principle component analysis (PCA) / partial least squares discriminant analysis (PLS-DA) / explosive

Cite this article

Download citation ▾
Qian-Qian Wang, Kai Liu, Hua Zhao, Cong-Hui Ge, Zhi-Wen Huang. Detection of explosives with laser-induced breakdown spectroscopy. Front. Phys., 2012, 7(6): 701‒707 https://doi.org/10.1007/s11467-012-0272-x

References

[1]
C. Pasquini, J. Cortez, L. M. C. Silva, and F. B. Gonzaga, J. Braz. Chem. Soc., 2007, 18(3): 463
CrossRef ADS Google scholar
[2]
J. E. Parmeter, in: 38th Annual International Carnahan Conference on Security Technology, IEEE, Albuquerque, NM, 2004: 355
CrossRef ADS Google scholar
[3]
T. L. Buxton and P. B. Harrington, Appl. Spectrosc., 2003, 57(2): 223
CrossRef ADS Google scholar
[4]
O. L. Collin, C. M. Zimmermann, and G. P. Jackson, Int. J. Mass Spectrom., 2009, 279(2-3): 93
CrossRef ADS Google scholar
[5]
G. W. Cook, P. T. LaPuma, G. L. Hook, and B. A. Eckenrode, J. Forensic Sci., 2010, 55(6): 1582
CrossRef ADS Google scholar
[6]
J. I. Steinfeld and J. Wormhoudt, Annu. Rev. Phys. Chem., 1998, 49(1): 203
CrossRef ADS Google scholar
[7]
A. P. M. Michel, Spectrochim. Acta B, 2010, 65: 185
[8]
J. S. Huang, Q. L. Chen, and W. D. Zhao, Spectrosc. Spect. Anal., 2009, 29: 3126
[9]
D. Q. Yuan and J. T. Xu, Adv. Mater. Res., 2011, 179-180: 1183
CrossRef ADS Google scholar
[10]
P. Lucena, A. Dona, L. M. Tobaria, and J. J. Laserna, Spectrochim Acta B, 2011, 66(1): 12
CrossRef ADS Google scholar
[11]
V. K. Singh, A. K. Rai, P. K. Rai, and P. K. Jindal, Lasers Med. Sci., 2009, 24(5): 749
CrossRef ADS Google scholar
[12]
Z. X. Lin, L. Chang, J. Li, and L. M. Liu, Spectrosc. Spect. Anal., 2009, 29: 1675
[13]
K. Liu, Q. Q. Wang, H. Zhao, and Y. L. Xiao, Spectrosc. Spect. Anal., 2011, 31: 1171
[14]
S. Sreedhar, M. A. Kumar, G. M. Kumar, P. P. Kiran, S. P. Tewari, and S. V. Rao, 2010, Proc. SPIE 7665 Chemical Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XI (Orlando, Florida, USA, 6-8 April, 2010: 76650T
[15]
J. Handke, F. Duschek, K. Grunewald, and C. Pargmann, 2011, Proc. SPIE 8018 Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XII (Orlando, Florida, USA, 26-28 April, 2011: 80180T
[16]
V. Lazic, A. Palucci, S. Jovicevic, C. Poggi, and E. Buono, Spectrochim. Acta B, 2009, 64: 1028
[17]
Q. Q. Wang, P. Jander, C. Fricke-Begemann, and R. Noll, Spectrochim. Acta B, 2008, 63: 1011
[18]
J. L. Gottfried, C. A. De Lucia, Munson, and A. W. Miziolek, Anal. Bioanal. Chem., 2009, 395(2): 283
CrossRef ADS Google scholar
[19]
H. Zhao, Q. Q.Wang, K. Liu, and C. H. Ge, Spectrosc. Spect. Anal., 2012, 32: 577
[20]
J. L. Gottfried, R. S. Harmon, F. C. De Lucia, and A. W. Miziolek, Spectrochim. Acta B, 2009, 64: 1009
[21]
D. L. Death, A. P. Cunningham, and L. J. Pollard, Spectrochim. Acta B, 2009, 64: 1048
[22]
B. L. Sun, J. L. Liu, and Y. B. Cai, Spectrosc. Spect. Anal., 2011, 31: 366
[23]
T. Galeano-Diaz, M. I. Acedo-Valenzuela, N. Mora-Diez, and A. Silva-Rodriguez, Electroanal., 2011, 23(2): 449
CrossRef ADS Google scholar
[24]
J. L. Jr De Lucia, C. A. Gottfried, Munson, and A. W. Miziolek, Appl. Opt., 2008, 47(31): G112
[25]
Q. Wang, K. Liu, and H. Zhao, Chin. Phys. Lett., 2012, 29(4): 044206
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(488 KB)

Accesses

Citations

Detail

Sections
Recommended

/