Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling

Zhe Wang, Ting-Bi Yuan, Siu-Lung Lui, Zong-Yu Hou, Xiong-Wei Li, Zheng Li, Wei-Dou Ni

PDF(421 KB)
PDF(421 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (6) : 708-713. DOI: 10.1007/s11467-012-0262-z
RESAERCH ARTICLE
RESAERCH ARTICLE

Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling

Author information +
History +

Abstract

Three major elements, carbon, hydrogen, and nitrogen, in twenty-four bituminous coal samples, were measured by laser-induced breakdown spectroscopy. Argon and helium were applied as ambient gas to enhance the signals and eliminate the interference of nitrogen from surrounding air. The relative standard deviation of the related emission lines and the performance in the partial least squares (PLS) modeling were compared for different ambient environments. The results showed that argon not only improved the intensity, but also reduced signal fluctuation. The PLS model also had the optimal performance in multi-element analysis using argon as ambient gas. The root mean square error of prediction of carbon concentration decreased from 4.25% in air to 3.49% in argon, while the average relative error reduced from 4.96% to 2.98%. Hydrogen line demonstrated similar improvement. Yet, the nitrogen lines were too weak to be detected even in an argon environment which suggested the nitrogen signal measured in air come from the breakdown of nitrogen molecules in the atmosphere.

Keywords

laser-induced breakdown spectroscopy (LIBS) / ambient gas / bituminous coal / partial least squares (PLS) / relative standard deviations (RSD)

Cite this article

Download citation ▾
Zhe Wang, Ting-Bi Yuan, Siu-Lung Lui, Zong-Yu Hou, Xiong-Wei Li, Zheng Li, Wei-Dou Ni. Major elements analysis in bituminous coals under different ambient gases by laser-induced breakdown spectroscopy with PLS modeling. Front. Phys., 2012, 7(6): 708‒713 https://doi.org/10.1007/s11467-012-0262-z

References

[1]
M. Gaft, I. Sapir-Sofer, H. Modiano, and R. Stana, Spectrochim. Acta B, 2007, 62(12): 1496
[2]
T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, Appl. Surf. Sci., 2011, 257(12): 5447
[3]
T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, Spectrochim. Acta B, 2009, 64(10): 1093
[4]
T. Ctvrtnickova, M. P. Mateo, A. Yanez, and G. Nicolas, Spectrochim. Acta B, 2010, 65(8): 734
[5]
M. Gaft, E. Dvir, H. Modiano, and U. Schone, Spectrochim. Acta B, 2008, 63(10): 1177
[6]
J. Feng, Z. Wang, L. West, Z. Li, and W. D. Ni, Anal. Bioanal. Chem., 2011, 400(10): 3261
[7]
T. Yuan, Z. Wang, L. Li, Z. Hou, Z. Li, and W. D. Ni, Appl. Opt., 2012, 51(7): B22
[8]
A. Bogaerts, Z. Y. Chen, and D. Bleiner, J. Anal. At. Spectrom., 2006, 21(4): 384
[9]
Z. Y. Chen, D. Bleiner, and A. Bogaerts, J. Appl. Phys., 2006, 99(6): 063304
[10]
Effenberger and J. R. Scott, Anal. Bioanal. Chem., 2011, 400(10): 3217
[11]
Q. L.Ma, V. Motto-Ros, W. Q. Lei, M. Boueri, X. S. Bai, L. J. Zheng, H. P. Zeng, and J. Yu, Spectrochim. Acta B, 2010, 65(11): 896
[12]
J. Li, J. D. Lu, Z. X. Lin, S. S. Gong, C. L. Xie, L. Chang, L. F. Yang, and P. Y. Li, Opt. Laser Technol., 2009, 41(8): 907
[13]
J. Feng, Z. Wang, Z. Li, and W. D. Ni, Spectrochim. Acta B, 2010, 65(7): 549
[14]
G. Cristoforetti, G. Lorenzetti, S. Legnaioli, and V. Palleschi, Spectrochim. Acta B, 2010, 65(910): 787
[15]
H. R. Griem, Spectral Line Broadening by Plasmas, New York: Academic Press, 1974
[16]
A. W. Miziolek, V. Palleschi, and I. Schechter, Eds., Laser Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge: Cambridge University Press, 2006
[17]
G. Cristoforetti, A. De Giacomo, M. Dell’Aglio, S. Legnaioli, E. Tognoni, V. Palleschi, and N. Omenetto, Spectrochim. Acta B, 2010, 65(1): 86
[18]
S. S. Harilal, C. V. Bindhu, V. P. N. Nampoori, and C. P. G. Vallabhan, Appl. Phys. Lett., 1998, 72(2): 167
[19]
J. Amador-Hernandez, L. E. Garcia-Ayuso, J. M. Fernandez- Romero, and M. D. L. de Castro, J. Anal. At. Spectrom., 2000, 15(6): 587
[20]
S. C. Yao, J. D. Lu, J. Y. Li, K. Chen, J. Li, and M. R. Dong, J. Anal. At. Spectrom., 2010, 25(11): 1733
[21]
M. R. Dong, J. D. Lu, S. C. Yao, J. Li, J. Y. Li, Z. M. Zhong, and W. Y. Lu, J. Anal. At. Spectrom., 2011, 26(11): 2183
[22]
Y. Lida, Spectrochim. Acta B, 1990, 45(12): 1353
[23]
M. Gaft, L. Nagli, I. Fasaki, M. Kompitsas, and G. Wilsch, Spectrochim. Acta B, 2009, 64(10): 1098
[24]
W. D. Zhou, L. I. Kexue, Q. M. Shen, J. Shao, and H. G. Qian, Spectrochim. Acta B, 2010, 65(5): 420
[25]
W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, Opt. Lett, 2011, 36(15): 2961
[26]
Z.Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, J. Anal. At. Spectrom., 2011, 26(11): 2289
[27]
Z. Wang, J. Feng, L. Z. Li, W. D. Ni, and Z. Li, J. Anal. At. Spectrom., 2011, 26(11): 2175

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(421 KB)

Accesses

Citations

Detail

Sections
Recommended

/