A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering
Feng-Zi Cong, Hong Wei, Xiao-Rui Tian, Hong-Xing Xu
A facile synthesis of branched silver nanowire structures and its applications in surface-enhanced Raman scattering
We report a facile method of preparing novel branched silvernanowire structures such as Y-shaped, K-shaped and other multi-branchednanowires. These branched nanostructures are synthesized by reducingsilver nitrate (AgNO3) in polyethylene glycol(PEG) with polyvinglpyrrolidone (PVP) as capping agent. Statisticaldata indicate that for the “y” typed branched nanowire,the branches grow out from the side of the trunk nanowire in a preferentialorientation with an angle of 55◦ between the branch and the trunk.Transmission electron microscopy (TEM) studies indicate that the defectson silver nanowires could support the growth of branched nanowires.Conditions such as the molar ratio of PVP/AgNO3, the reaction temperature, and the degree of polymerization of reducingagent and PVP play important roles in determining the yield of thesilver branches. Due to the rough surface, these branched nanostructurescan be used as efficient substrates for surface-enhanced Raman scatteringapplications.
branched silver nanowire / surface-enhanced Raman scattering (SERS)
[1] |
Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, and Y. Q. Yan, Adv. Mater., 2003, 15(5): 353
CrossRef
ADS
Google scholar
|
[2] |
A. R. Tao, S. Habas, and P. D. Yang, Small, 2008, 4(3): 310
CrossRef
ADS
Google scholar
|
[3] |
K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, J. Phys. Chem. B, 2003, 107(3): 668
CrossRef
ADS
Google scholar
|
[4] |
S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, Chem. Phys. Lett., 1998, 288(2-4): 243
CrossRef
ADS
Google scholar
|
[5] |
C. J. Orendorff, T. K. Sau, and C. J. Murphy, Small, 2006, 2(5): 636
CrossRef
ADS
Google scholar
|
[6] |
R. Narayanan and M. A. El-Sayed, J. Am. Chem. Soc., 2004, 126(23): 7194
CrossRef
ADS
Google scholar
|
[7] |
H. Rashid, R. R. Bhattacharjee, A. Kotal, and T. K. Mandal, Langmuir, 2006, 22(17): 7141
CrossRef
ADS
Google scholar
|
[8] |
N. J. Halas, S. Lal, W.-S. Chang, S. Link, and P. Nordlander, Chem. Rev., 2011, 111(6): 3913
CrossRef
ADS
Google scholar
|
[9] |
H.Wei,Z. P. Li, X. R. Tian, Z. X. Wang, F. Z. Cong, N. Liu, S. P. Zhang, P. Nordlander, N. J. Halas, and H. X. Xu, Nano Lett., 2011, 11(2): 471
CrossRef
ADS
Google scholar
|
[10] |
H. Wei, Z. X. Wang, X. R. Tian, M. Käll, and H. X. Xu, Nat. Commun., 2011, 2: 387
CrossRef
ADS
Google scholar
|
[11] |
H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson, Phys. Rev. Lett., 1999, 83(21): 4357
CrossRef
ADS
Google scholar
|
[12] |
M. Moskovits, J. Raman Spectrosc., 2005, 36: 485
|
[13] |
Z. Q. Tian, J. Raman Spectrosc., 2005, 36: 466
CrossRef
ADS
Google scholar
|
[14] |
S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, Proc. Natl. Acad. Sci. USA, 2000, 97(3): 996
CrossRef
ADS
Google scholar
|
[15] |
Y. W. C. Cao, R. C. Jin, and C. A. Mirkin, Science, 2002, 297(5586): 1536
CrossRef
ADS
Google scholar
|
[16] |
T. A. Taton, C. A. Mirkin, and R. L. Letsinger, Science, 2000, 289(5485): 1757
CrossRef
ADS
Google scholar
|
[17] |
S. R. Nicewarner-Pena, R. G. Freeman, B. D. Reiss, L. He, D. J. Pena, I. D. Walton, R. Cromer, C. D. Keating, and M. J. Natan, Science, 2001, 294(5540): 137
CrossRef
ADS
Google scholar
|
[18] |
H. X. Xu and M. Kall, Sens. Actuator B-Chem., 2002, 87: 244
CrossRef
ADS
Google scholar
|
[19] |
K. M. Mayer and J. H. Hafner, Chem. Rev., 2011, 111(6): 3828
CrossRef
ADS
Google scholar
|
[20] |
X. H. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J. Am. Chem. Soc., 2006, 128(6): 2115
CrossRef
ADS
Google scholar
|
[21] |
S. Lal, S. E. Clare, and N. J. Halas, Acc. Chem. Res., 2008, 41(12): 1842
CrossRef
ADS
Google scholar
|
[22] |
M. Rycenga, C. M. Cobley, J. Zeng, W. Y. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. N. Xia, Chem. Rev., 2011, 111(6): 3669
CrossRef
ADS
Google scholar
|
[23] |
H. Y. Liang, W. Z. Wang, Y. Z. Huang, S. P. Zhang, H. Wei, and H. X. Xu, J. Phys. Chem. C, 2010, 114(16): 7427
CrossRef
ADS
Google scholar
|
[24] |
D. B. Yu and V. W. W. Yam, J. Am. Chem. Soc., 2004, 126(41): 13200
CrossRef
ADS
Google scholar
|
[25] |
H. Y. Chen, Y. Gao, H. R. Zhang, L. B. Liu, H. C. Yu, H. F. Tian, S. S. Xie, and J. Q. Li, J. Phys. Chem. B, 2004, 108(32): 12038
CrossRef
ADS
Google scholar
|
[26] |
H. Y. Liang, H. X. Yang, W. Z. Wang, J. Q. Li, and H. X. Xu, J. Am. Chem. Soc., 2009, 131(17): 6068
CrossRef
ADS
Google scholar
|
[27] |
Y. G. Sun, B. Mayers, T. Herricks, and Y. N. Xia, Nano Lett., 2003, 3(7): 955
CrossRef
ADS
Google scholar
|
[28] |
M. Maillard, P. R. Huang, and L. Brus, Nano Lett., 2003, 3(11): 1611
CrossRef
ADS
Google scholar
|
[29] |
J. T. Zhang, X. L. Li, X. M. Sun, and Y. D. Li, J. Phys. Chem. B, 2005, 109(25): 12544
CrossRef
ADS
Google scholar
|
[30] |
S. H. Chen and D. L. Carroll, Nano Lett., 2002, 2(9): 1003
CrossRef
ADS
Google scholar
|
[31] |
H.-M. Gong, L. Zhou, X.-R. Su, S. Xioo, S.-D. Liu, and Q.-Q. Wang, Adv. Funct. Mater., 2009, 19(2): 298
CrossRef
ADS
Google scholar
|
[32] |
R. C. Jin, Y.W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, Science, 2001, 294(5548): 1901
CrossRef
ADS
Google scholar
|
[33] |
X. W. Lou, C. Yuan, and L. A. Archer, Chem. Mater., 2006, 18(17): 3921
CrossRef
ADS
Google scholar
|
[34] |
L. Lu, A. Kobayashi, K. Tawa, and Y. Ozaki, Chem. Mater., 2006, 18(20): 4894
CrossRef
ADS
Google scholar
|
[35] |
Y. L. Wang, P. H. C. Camargo, S. E. Skrabalak, H. C. Gu, and Y. N. Xia, Langmuir, 2008, 24(20): 12042
CrossRef
ADS
Google scholar
|
[36] |
X. G. Wen, Y. T. Xie, M. W. Mak, K. Y. Cheung, X. Y. Li, R. Renneberg, and S. Yang, Langmuir, 2006, 22(10): 4836
CrossRef
ADS
Google scholar
|
[37] |
X. Q. Wang, H. Itoh, K. Naka, and Y. Chujo, Langmuir, 2003, 19(15): 6242
CrossRef
ADS
Google scholar
|
[38] |
J. P. Xiao, Y. Xie, R. Tang, M. Chen, and X. B. Tian, Adv. Mater., 2001, 13(24): 1887
CrossRef
ADS
Google scholar
|
[39] |
J. X. Fang, H. Hahn, R. Krupke, F. Schramm, T. Scherer, B. J. Ding, and X. P. Song, Chem. Commun., 2009, (9): 1130
CrossRef
ADS
Google scholar
|
[40] |
H. Imai, H. Nakamura, and T. Fukuyo, Cryst. Growth Des., 2005, 5(3): 1073
CrossRef
ADS
Google scholar
|
[41] |
Y. G. Sun and Y. N. Xia, Adv. Mater., 2002, 14(11): 833
CrossRef
ADS
Google scholar
|
[42] |
Y. G. Sun, Y. D. Yin, B. T. Mayers, T. Herricks, and Y. N. Xia, Chem. Mater., 2002, 14(11): 4736
CrossRef
ADS
Google scholar
|
[43] |
Y. G. Sun, B. Gates, B. Mayers, and Y. N. Xia, Nano Lett., 2002, 2(2): 165
CrossRef
ADS
Google scholar
|
[44] |
B. Wiley, Y. Sun, and Y. Xia, Acc. Chem. Res., 2007, 40(10): 1067
CrossRef
ADS
Google scholar
|
[45] |
X. C. Jiang, S. X. Xiong, Z. A. Tian, C. Y. Chen, W. M. Chen, and A. B. Yu, J. Phys. Chem. C, 2011, 115(5): 1800
CrossRef
ADS
Google scholar
|
[46] |
B. Wiley, Y. G. Sun, B. Mayers, and Y. N. Xia, Chem. Eur. J., 2005, 11(2): 454
CrossRef
ADS
Google scholar
|
[47] |
H. X. Xu, J. Aizpurua, M. Kall, and P. Apell, Phys. Rev. E, 2000, 62(33): 4318
CrossRef
ADS
Google scholar
|
[48] |
H. X. Xu, Phys. Lett. A, 2003, 312(5-6): 411
CrossRef
ADS
Google scholar
|
[49] |
H. X. Xu, Appl. Phys. Lett., 2004, 85(24): 5980
CrossRef
ADS
Google scholar
|
[50] |
H. Wei, U. Håkanson, Z. L. Yang, F. Höök, and H. X. Xu, Small, 2008, 4(9): 1296
CrossRef
ADS
Google scholar
|
[51] |
J. N. Chen, W. S. Yang, K. Dick, K. Deppert, H. Q. Xu, L. Samuelson, and H. X. Xu, Appl. Phys. Lett., 2008, 92(9): 093110
CrossRef
ADS
Google scholar
|
[52] |
H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, Nano Lett., 2008, 8(8): 2497
CrossRef
ADS
Google scholar
|
[53] |
H. Y. Liang, Z. P. Li, W. Z. Wang, Y. S. Wu, and H. X. Xu, Adv. Mater., 2009, 21(45): 4614
CrossRef
ADS
Google scholar
|
[54] |
B. Zhang, P. Xu, X. M. Xie, H.Wei, Z. P. Li, N. H. Mack, X. J. Han, H. X. Xu, and H. L. Wang, J. Mater. Chem., 2011, 21(8): 2495
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |