Temperature and electron density of soil plasma generated by LA-FPDPS
Xia-Fen Li, Wei-Dong Zhou, Zhi-Feng Cui
Temperature and electron density of soil plasma generated by LA-FPDPS
Electron temperature and electron number density are important parameters in the characterization of plasma. In this paper the electron temperature and electron number density of soil plasma generated by laser ablation combined with nanosecond discharge spark at different discharge voltages have been studied. Saha–Boltzmann plot and Stark broadening are used to determine the temperature and electron number density. It is proved that local thermal equilibrium is fulfilled in the nanosecond spark enhanced plasma. The enhanced optical emission, signal to noise ratio and the stability in term of the relative standard deviation of signal intensity at different spark voltages were investigated in detail. A relative stable discharge process was observed with use of a 10 kV discharge voltage under the carried experimental configuration.
laser ablation fast pulse discharge plasma spectroscopy (LA-FPDPS) / local thermodynamic equilibrium (LTE) / electron temperature / electron number density / discharge voltage
[1] |
J. P. Singh and S. N. Thakur, Laser Induced Breakdown Spectroscopy, Elsevier, 2007
|
[2] |
J. P. Singh, F. Y. Yueh, H. Zhang, and K. P. Karney, Recent Res. Dev. Appl. Spectrosc., 1999, 2: 59
|
[3] |
V. N. Rai, A. K. Rai, F. Y. Yueh, and J. P. Singh, Appl. Opt., 2003, 42(12): 2085
CrossRef
ADS
Google scholar
|
[4] |
H. Huang, Q. Chen, and W. Zhou, Spectrosc. Spectral Anal., 2009, 29: 3126
|
[5] |
Z. Wang, J. Feng, L. Z. Li, W. Ni, and Z. Li, J. Anal. At. Spectrom., 2011, 26(11): 2175
CrossRef
ADS
Google scholar
|
[6] |
A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, Appl. Spectrosc., 1999, 53(8): 960
CrossRef
ADS
Google scholar
|
[7] |
J. Feng, Z. Wang, Z. Li, and W. D. Ni, Spectrochim. Acta. B, 2010, 65: 549
CrossRef
ADS
Google scholar
|
[8] |
R. S. Adrain and J. Watson, J. Phys. D, 1984, 17(10): 1915
CrossRef
ADS
Google scholar
|
[9] |
L. J. Radziemski and D. A. Cremers, Laser-Induced Plasmas and Applications, Marcel Dekker, 1989
|
[10] |
E. tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, and A. Salvetti, Spectrochim. Acta. B, 2007, 62: 1287
|
[11] |
M. Essien, L. J. Radziemsky, and J. Sneddon, J. Anal. At. Spectrom., 1988, 3(7): 985
CrossRef
ADS
Google scholar
|
[12] |
M. R. Joseph, N. Xu, and V. Majidi, Spectrochim. Acta. B, 1994, 49: 89
CrossRef
ADS
Google scholar
|
[13] |
J. A. M. van der Mullen, Phys. Rep., 1990, 191(2-3): 109
CrossRef
ADS
Google scholar
|
[14] |
M. D. Calzada, M. Moisan, A. Gamero, and A. Sola, J. Appl. Phys., 1996, 80(1): 46
CrossRef
ADS
Google scholar
|
[15] |
J. A. Aguilera and C. Aragon, Specrochim. Acta. B, 2009, 64: 685
CrossRef
ADS
Google scholar
|
[16] |
J. A. Aguilera and C. Aragon, Appl. Surf. Sci., 2002, 197-198: 273
CrossRef
ADS
Google scholar
|
[17] |
L. St-Onge, M. Sabsabi, and P. Cielo, Spectrochim. Acta. B, 1998, 53: 407
CrossRef
ADS
Google scholar
|
[18] |
T. Ctvrtníkova, L. M. Cabalín, J. Laserna, and V. Kanický, Spectrochim. Acta. B, 2008, 63: 42
CrossRef
ADS
Google scholar
|
[19] |
V. I. Babushok, F. C. Jr DeLucia, J. L. Gottfried, C. A. Munson, and A. W. Miziolek, Spectrochim. Acta. B, 2006, 61: 999
CrossRef
ADS
Google scholar
|
[20] |
K. X. Li, W. D. Zhou, Q. M. Shen, J. Shao, and H. G. Qian, Spectrochim. Acta. B, 2010, 65: 420
CrossRef
ADS
Google scholar
|
[21] |
K. X. Li, W. D. Zhou, and Q. M. Shen, J. Anal. At. Spectrom., 2010, 25: 1475
CrossRef
ADS
Google scholar
|
[22] |
W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, and J. M. Long, Opt. Express, 2010, 18(3): 2573
CrossRef
ADS
Google scholar
|
[23] |
Y. Chen, Q. Zhang, G. Li, R. Li, and J. Zhou, J. Anal. At. Spectrom., 2010, 25(12): 1969
CrossRef
ADS
Google scholar
|
[24] |
O. A. Nassef and H. E. Elsayed-Ali, Spectrochim. Acta. B, 2005, 60: 1564
CrossRef
ADS
Google scholar
|
[25] |
W. Deng, Y. Liu, G. Wei, X. Li, X. Tu, L. Xie, H. Zhang, and W. Sun, J. Anal. At. Spectrom., 2010, 25(1): 84
CrossRef
ADS
Google scholar
|
[26] |
Q. Z. Bian, J. Koch, H. Lindner, H. Berndt, R. Hergenröder, and K. Niemax, J. Anal. At. Spectrom., 2005, 20(8): 736
CrossRef
ADS
Google scholar
|
[27] |
Y. Ikeda, A. Moon, and M. Kaneko, Appl. Opt., 2010, 49(13): C95
CrossRef
ADS
Google scholar
|
[28] |
W. D. Zhou, K. X. Li, X. F. Li, H. G. Qian, J. Shao, X. D. Fang, P. H. Xie, and W. Q. Liu, Opt. Lett., 2011, 36(15): 2961
CrossRef
ADS
Google scholar
|
[29] |
W. D. Zhou, K. X. Li, H. G. Qian, Z. J. Ren, and Y. Yu, Appl. Opt., 2012, 51(7): B42
CrossRef
ADS
Google scholar
|
[30] |
J. A. Aguilera and C. Aragon, Spectrochim. Acta. B, 2004, 59(12): 1861
CrossRef
ADS
Google scholar
|
[31] |
L. J. Radziemski, T. R. Loree, D. A. Cremers, and N. M. Hoffman, Anal. Chem., 1983, 55(8): 1246
CrossRef
ADS
Google scholar
|
[32] |
M. Milan and J. J. Laserna, Spectrochim. Acta. B, 2001, 56: 275
CrossRef
ADS
Google scholar
|
[33] |
C. A. Bye and A. Schheeline, Appl. Spectrosc., 1993, 47(12): 2022
CrossRef
ADS
Google scholar
|
[34] |
X. Z. Zeng, S. S. Mao, C. Y. Liu, X. L. Mao, R. Greif, and R. E. Russo, Spectrochim. Acta. B, 2003, 58: 867
CrossRef
ADS
Google scholar
|
[35] |
H. R. Griem, Plasma Spectroscopy, New York: McGraw-Hill, 1964: 483
|
[36] |
C. A. Bye and A. Scheeline, J. Quant. Spectrosc. Radiat. Trans., 1995, 53(1): 75
CrossRef
ADS
Google scholar
|
[37] |
J. Hermann, C. Boulmer-Leborgne, and D. Hong, J. Appl. Phys., 1998, 83(2): 691
CrossRef
ADS
Google scholar
|
[38] |
F. Colao, R. Fantoni, V. Lazic, and A. Paolini, Appl. Phys. A, 2004, 79(1): 143
CrossRef
ADS
Google scholar
|
[39] |
R. W. P. McWhirter, Plasma Diagnostic Techniques, New York: Academic Press, 1965, Chap. 5: 206
|
/
〈 | 〉 |