Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors

Liang-feng Huang, Zhi Zeng

PDF(331 KB)
PDF(331 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 324-327. DOI: 10.1007/s11467-011-0239-3
PERSPECTIVE
PERSPECTIVE

Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors

Author information +
History +

Abstract

It is promising to apply quantum-mechanically confined graphene systems in field-effect transistors. High stability, superior performance, and large-scale integration are the main challenges facing the practical application of graphene transistors. Our understandings of the adatom-graphene interaction combined with recent progress in the nanofabrication technology indicate that very stable and high-quality graphene nanostripes could be integrated in substrate-supported functionalized (hydrogenated or fluorinated) graphene using electron-beam lithography.We also propose that parallelizing a couple of graphene nanostripes in a transistor should be preferred for practical application, which is also very useful for transistors based on graphene nanoribbon.

Keywords

graphene nanostripe / functionalized graphene / field-effect transistor

Cite this article

Download citation ▾
Liang-feng Huang, Zhi Zeng. Patterning graphene nanostripes in substrate-supported functionalized graphene: A promising route to integrated, robust, and superior transistors. Front. Phys., 2012, 7(3): 324‒327 https://doi.org/10.1007/s11467-011-0239-3

References

[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 2004, 306(5696): 666
CrossRef ADS Google scholar
[2]
A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6(3): 183
CrossRef ADS Google scholar
[3]
D. C. Wei and Y. Q. Liu, Adv. Mater., 2010, 22(30): 3225
CrossRef ADS Google scholar
[4]
A. V. Rozhkov, G. Giavaras, Y. P. Bliokh, V. Freilikher, and F. Nori, Phys. Rep., 2011, 503(2-3): 77
CrossRef ADS Google scholar
[5]
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Prog. Mater. Sci., 2011, 56(8): 1178
CrossRef ADS Google scholar
[6]
F. Molitor, J. Güttinger, C. Stampfer, S. Dröscher, A. Jacobsen, T. Ihn, and K. Ensslin, J. Phys.: Condens. Matter, 2011, 23(24): 243201
CrossRef ADS Google scholar
[7]
C. Stampfer, S. Fringes, J. Güttinger, F. Molitor, C. Volk, B. Terr′es, J. Dauber, S. Engels, S. Schnez, A. Jacobsen, S. Dröscher, T. Ihn, and K. Ensslin, Front. Phys., 2011, 6(3): 271
[8]
W. D. Sheng, M. Korkusinski, A. D. Güclü, M. Zielinski, P. Potasz, E. S. Kadantsev, O. Voznyy, and P. Hawrylak, Front. Phys., 2012, 7(3): 328
CrossRef ADS Google scholar
[9]
Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, Adv. Funct. Mater., 2009, 19(19): 3077
CrossRef ADS Google scholar
[10]
M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, Nature, 2011, 474(7349): 64
CrossRef ADS Google scholar
[11]
Q. Bao, H. Zhang, B. Wang, Z. Ni, C. Haley, Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, Nat. Photon., 2011, 5(7): 411
CrossRef ADS Google scholar
[12]
F. Schwierz, Nat. Nanotechnol., 2010, 5(7): 487
CrossRef ADS Google scholar
[13]
Z. Chen, Y. M. Lin, M. J. Rooks, and P. Avouris, Physica E, 2007, 40(2): 228
CrossRef ADS Google scholar
[14]
M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett., 2007, 98(20): 206805
CrossRef ADS Google scholar
[15]
X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett., 2008, 100(20): 206803
CrossRef ADS Google scholar
[16]
X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science, 2008, 319(5867): 1229
CrossRef ADS Google scholar
[17]
L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, Nat. Nanotechnol., 2010, 5(5): 321
CrossRef ADS Google scholar
[18]
C. Tao, L. Jiao, O. V. Yazyev, Y. C. Chen, J. Feng, X. Zhang, R. B. Capaz, J. M. Tour, A. Zettl, and S. G. Louie, Nat. Phys., 2011, 7: 616
CrossRef ADS Google scholar
[19]
L. C. Campos, V. R. Manfrinato, J. D. Sanchez-Yamagishi, J. Kong, and P. Jarillo-Herro, Nano Lett., 2009, 9(7): 2600
CrossRef ADS Google scholar
[20]
J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A. P. Seitsonen, M. Saleh, X. Feng, K. Müllen, and R. Fasel, Nature, 2010, 466(7305): 470
CrossRef ADS Google scholar
[21]
M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, and C. Berger, Nat. Nanotechnol., 2010, 5(10): 727
CrossRef ADS Google scholar
[22]
X. Liang, Y. S. Jung, S. Wu, A. Ismach, D. L. Olynick, S. Cabrini, and J. Bokor, Nano Lett., 2010, 10(7): 2454
CrossRef ADS Google scholar
[23]
R. Yang, L. Zhang, Y. Wang, Z. Shi, D. Shi, H. Gao, E. Wang, and G. Zhang, Adv. Mater., 2010, 22(36): 4014
CrossRef ADS Google scholar
[24]
P. Koskinen, S. Malola, and H. Häkkinen, Phys. Rev. B, 2009, 80(7): 073401
CrossRef ADS Google scholar
[25]
X. Wang, X. Li, L. Zhang, Y. Yoon, P. K. Weber, H. Wang, J. Guo, and H. Dai, Science, 2009, 324: 76
[26]
P. Gallagher, K. Todd, and D. Goldhaber-Gordon, Phys. Rev. B, 2010, 81(11): 115409
CrossRef ADS Google scholar
[27]
H. Wang, Y. Wu, C. Cong, J. Shang, and T. Yu, ACS Nano, 2010, 4(12): 7221
CrossRef ADS Google scholar
[28]
G. Xu, Jr. C. M. Torres, J. Tang, J. Bai, E. B. Song, Y. Huang, X. Duan, Y. Zhang, and K. L. Wang, Nano Lett., 2011, 11(3): 1082
CrossRef ADS Google scholar
[29]
J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K. L. Wang, Y. Huang, and X. Duan, Nat. Nanotechnol., 2010, 5(9): 655
CrossRef ADS Google scholar
[30]
W. Y. Kim and K. S. Kim, Nat. Nanotechnol., 2008, 3(7): 408
CrossRef ADS Google scholar
[31]
A. K. Singh and B. I. Yakobson, Nano Lett., 2009, 9(4): 1540
CrossRef ADS Google scholar
[32]
A. K. Singh, E. S. Penev, and B. I. Yakobson, ACS Nano, 2010, 4(6): 3510
CrossRef ADS Google scholar
[33]
E. Muñnoz, A. K. Singh, M. A. Ribas, E. S. Penev, and B. I. Yakobson, Diamond Related Materials, 2010, 19(5-6): 368
[34]
M. A. Ribas, A. K. Singh, P. B. Sorokin, and B. I. Yakobson, Nano Res., 2011, 4(1): 143
CrossRef ADS Google scholar
[35]
L. F. Huang, X. H. Zheng, G. R. Zhang, L. L. Li, and Z. Zeng, J. Phys. Chem. C, 2011, 115(43): 21088
CrossRef ADS Google scholar
[36]
A. A. Tseng, A. Notargiacomo, and T. P. Chen, J. Vac. Technol. B, 2005, 23(3): 877
CrossRef ADS Google scholar
[37]
C. Riedl, C. Coletti, T. Iwasaki, A. A. Zakharov, and U. Starke, Phys. Rev. Lett., 2009, 103(24): 246804
CrossRef ADS Google scholar
[38]
J. A. Robinson, M. Hollander, M. III Labella, K. A. Trumbull, R. Cavelero, and D. W. Snyder, Nano Lett., 2011, 11(9): 3875
CrossRef ADS Google scholar
[39]
S. L. Wong, H. Huang, Y. Wang, L. Cao, D. Qi, I. Santoso, W. Chen, and A. T. S. Wee, ACS Nano, 2011, 5(9): 7662
CrossRef ADS Google scholar
[40]
Y. Lin, F. Ding, and B. I. Yakobson, Phys. Rev. B, 2008, 78(4): 041402(R)
CrossRef ADS Google scholar
[41]
Z. M. Ao, A. D. Nern′andez-Nieves, F. M. Peeters, and S. Li, Appl. Phys. Lett., 2010, 97(23): 233109
CrossRef ADS Google scholar
[42]
J. H. Lee and J. C. Grossman, Appl. Phys. Lett., 2010, 97(13): 133102
CrossRef ADS Google scholar
[43]
P. Sessi, J. R. Guest, M. Bode, and N. P. Guisinger, Nano Lett., 2009, 9(12): 4343
CrossRef ADS Google scholar
[44]
F. Withers, T. H. Bointon, M. Dubois, S. Russo, and M. F. Craciun, Nano Lett., 2011, 11(9): 3912
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(331 KB)

Accesses

Citations

Detail

Sections
Recommended

/