Superconductivity of topological matters induced via pressure

Jun-liang Zhang, Si-jia Zhang, Hong-ming Weng, Wei Zhang, Liu-xiang Yang, Qing-qing Liu, Pan-pan Kong, Jie Zhu, Shao-min Feng, Xian-cheng Wang, Ri-cheng Yu, Lie-zhao Cao, Shoucheng Zhang, Xi Dai, Zhong Fang, Chang-qing Jin

PDF(467 KB)
PDF(467 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (2) : 193-199. DOI: 10.1007/s11467-011-0217-9
REVIEW ARTICLE
REVIEW ARTICLE

Superconductivity of topological matters induced via pressure

Author information +
History +

Abstract

By applying pressure on the topological insulator Bi2Te3 single crystal, superconducting phase was found without a crystal structure phase transition. The new superconducting phase is under the pressure range of 3 GPa to 6 GPa. The high pressure Hall effect measurements indicated that the superconductivity caused by bulk hole pockets. The high pressure structure investigations with synchrotron X-ray diffraction indicated that the superconducting phase is of similar structure to that of ambient phase structure with only slight change with lattice parameter and internal atomic position. The topological band structures indicate the superconducting phase under high pressure remained topologically nontrivial. The results suggested that topological superconductivity can be realized in Bi2Te3 due to the proximity effect between superconducting bulk states and Diractype surface states. We also discussed the possibility that the bulk state could be a topological superconductor.

Keywords

topological insulator / high pressure

Cite this article

Download citation ▾
Jun-liang Zhang, Si-jia Zhang, Hong-ming Weng, Wei Zhang, Liu-xiang Yang, Qing-qing Liu, Pan-pan Kong, Jie Zhu, Shao-min Feng, Xian-cheng Wang, Ri-cheng Yu, Lie-zhao Cao, Shoucheng Zhang, Xi Dai, Zhong Fang, Chang-qing Jin. Superconductivity of topological matters induced via pressure. Front. Phys., 2012, 7(2): 193‒199 https://doi.org/10.1007/s11467-011-0217-9

References

[1]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science, 2006, 314(5806): 1757
CrossRef ADS Google scholar
[2]
L. Fu and C. L. Kane, Phys. Rev. B, 2007, 76(4): 045302
CrossRef ADS Google scholar
[3]
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science, 2007, 318(5851): 766
CrossRef ADS Google scholar
[4]
D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature, 2008, 452: 970
CrossRef ADS Google scholar
[5]
Y. L. Chen, J. G. Analytis, J. H. Chu, Z. K. Liu, S. K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z. X. Shen, Science, 2009, 325(5937): 178
CrossRef ADS Google scholar
[6]
H. J. Zhang, C. X. Liu, X. L. Qi, X. Dai, Z. Fang, and S. C. Zhang, Nat. Phys., 2009, 5: 438
CrossRef ADS Google scholar
[7]
Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys., 2009, 5 : 398
CrossRef ADS Google scholar
[8]
J. C. Y. Teo, L. Fu, and C. L. Kane, Phys. Rev. B, 2008, 78(4): 045426
CrossRef ADS Google scholar
[9]
W. Zhang, R. Yu, H. J. Zhang, X. Dai, and Z. Fang, New J. Phys., 2010, 12: 065013
CrossRef ADS Google scholar
[10]
Y. L. Chen, Z. K. LiuJ. G. Analytis, J. H. Chu, H. J. Zhang, B. H. Yan, S. K. Mo, R. G. Moore, D. H. Lu, I. R. Fisher, S. C. Zhang, Z. Hussain, and Z. X. Shen, Phys. Rev. Lett., 2010, 105(26): 266401
CrossRef ADS Google scholar
[11]
X. L. Qi and S. C. Zhang, arXiv:1008.2026v1, 2010
[12]
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., 2010, 82(4): 3045
CrossRef ADS Google scholar
[13]
B. H. Yan, C. X. Liu, H. J. Zhang, C. Y. Yam, X. L. Qi, T. Frauenheim, and S. C. Zhang, Europhys. Lett., 2010, 90(3): 37002
CrossRef ADS Google scholar
[14]
D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dil, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Phys. Rev. Lett., 2009, 103(14) : 146401
CrossRef ADS Google scholar
[15]
X. L. Qi, R. D. Li, J. D. Zang, and S. C. Zhang, Science, 2009, 323(5918) : 1184
CrossRef ADS Google scholar
[16]
X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B, 2008, 78(19): 195424
CrossRef ADS Google scholar
[17]
L. Fu and C. L. Kane, Phys. Rev. Lett., 2008, 100(9): 096407
CrossRef ADS Google scholar
[18]
X. L. Qi, T. L. Hughes, S. Raghu, and S. C. Zhang, Phys. Rev. Lett., 2009, 102(18): 187001
CrossRef ADS Google scholar
[19]
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B, 2008, 78(19): 195125
CrossRef ADS Google scholar
[20]
S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Ludwig, New J. Phys., 2010, 12: 065010
CrossRef ADS Google scholar
[21]
Y. S. Hor, A. J. Williams, J. G. Checkelsky, P. Roushan, J. Seo, Q. Xu, H. W. Zandbergen, A. Yazdani, N. P. Ong, and R. J. Cava, Phys. Rev. Lett., 2010, 104(5): 057001
CrossRef ADS Google scholar
[22]
L. A. Wray, S. Y. Xu, Y. Xia, Y. S. Hor, D. Qian, A. V. Fedorov, H. Lin, A. Bansil, R. J. Cava, and M. Z. Hasan, Nat. Phys., 2010, 6: 855
CrossRef ADS Google scholar
[23]
J. L. Zhang, S. J. Zhang, H. M. Weng, W. Zhang, L. X. Yang, Q. Q. Liu, S. M. Feng, X. C. Wang, R. C. Yu, L. Z. Cao, L. Wang, W. G. Yang, H. Z. Liu, W. Y. Zhao, S. C. Zhang, X. Dai, Z. Fang, and C. Q. Jin, Proc. Natl. Acad. Sci. USA, 2011, 108(1): 24
CrossRef ADS Google scholar
[24]
M. Einaga, Y. Tanabe, A. Nakayama, A. Ohmura, F. Ishikawa, and Y. Yamada, J. Phys.: Confer. Ser., 2010, 215(1): 012036
CrossRef ADS Google scholar
[25]
C. Zhang et al., Phys. Rev. B, 2011,
[26]
N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev., 1966, 147: 295
CrossRef ADS Google scholar
[27]
S. V. Ovsyannikov, V. V. Shchennikov, G. V. Vorontsov, A. Y. Manakov, A. Y. Likhacheva, and V. A. Kulbachinskii, J. Appl. Phys., 2008, 104 : 053713
CrossRef ADS Google scholar
[28]
A. Nakayama, M. Einaga, Y. Tanabe, S. Nakano, F. Ishikawa, and Y. Yamada, High Pressure Research, 2009, 29 : 245
CrossRef ADS Google scholar
[29]
M. Einaga, A. Ohmura, A. Nakayama, F. Ishikawa, Y. Yamada, and S. Nakano, Phys. Rev. B, 2011, 83(9): 092102
CrossRef ADS Google scholar
[30]
B. H. Toby, Journal of Applied Crystallography, 2001, 34: 210
CrossRef ADS Google scholar
[31]
X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B, 2010, 81(13): 134508
CrossRef ADS Google scholar
[32]
L. Fu and E. Berg, Phys. Rev. Lett., 2010, 105(9): 097001
CrossRef ADS Google scholar
[33]
H. K. Mao and P. M. Bell, Science, 1976, 191(4229): 851
CrossRef ADS Google scholar
[34]
S. J. Zhang, X. C. Wang, R. Sammynaiken, J. S. Tse, L. X. Yang, Z. Li, Q. Q. Liu, S. Desgreniers, Y. Yao, H. Z. Liu, and C. Q. Jin, Phys. Rev. B, 2009, 80(1): 014506
CrossRef ADS Google scholar
[35]
S. J. Zhang, X. C. Wang, Q. Q. Liu, Y. X. Lv, X. H. Yu, Z. J. Lin, Y. S. Zhao, L. Wang, Y. Ding, H. K. Mao, and C. Q. Jin, Europhys. Lett., 2009, 88(4): 47008
CrossRef ADS Google scholar
[36]
http://www.openmx-square.org/

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(467 KB)

Accesses

Citations

Detail

Sections
Recommended

/