First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs

Shun-li Yue , Hong Zhang

Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 353 -359.

PDF (652KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 353 -359. DOI: 10.1007/s11467-011-0209-9
RESEARCH ARTICLE

First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs

Author information +
History +
PDF (652KB)

Abstract

The adsorptions of rare-earth (RE) atoms on (6, 0) and (8, 0) single-walled carbon nanotubes (SWCNTs) have been investigated by using the first-principles pseudopotential plane wave method within density functional theory (DFT). The binding energy, Mulliken charge, magnetic properties, band structure and DOS were calculated and analyzed. Most of RE atoms including Nd, Sm and Eu have a magnetic ground state with a significant magnetic moment. Some electrons transfer between RE-5d, 6s and C-2p orbitals. Owing to the curvature effect, the values of binding energy for RE atoms doped (6, 0) SWCNT are lower than those of the same atoms on (8, 0) SWCNT. The pictures of DOS show that hybridizations between RE-5d, 6s states and C-2p orbitals and between RE-4f and C-2p orbitals appear near the Fermi level. Results indicate that the properties of SWCNTs can be modified by the adsorptions of RE atoms.

Keywords

DFT / RE atoms / single-walled carbon nanotubes (SWCNTs) / doping

Cite this article

Download citation ▾
Shun-li Yue, Hong Zhang. First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs. Front. Phys., 2012, 7(3): 353-359 DOI:10.1007/s11467-011-0209-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. Iijima, Nature, 1991, 354(7): 56

[2]

M. S. Dresselhaus, G. Presselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Heidelberg: Springer, 2001

[3]

Z. X. Guo and X. G. Gong, Front. Phys. China, 2009, 4(3): 389

[4]

P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Trans. Nanotech., 2002, 1 (1): 78

[5]

Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett., 2004, 84(9): 1525

[6]

T. Yildirim and S. Ciraci, Phys. Rev. Lett., 2005, 94(17): 175501

[7]

W. Z. Lia, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, G. Q. Sun, and Q. Xin, Carbon, 2002, 40(5): 791

[8]

Y. Yagi, T. M. Briere, M. H. F. Sluiter, V. Kumar, A. A. Farajian, and Y. Kawazoe, Phys. Rev. B, 2004, 69(7): 075414

[9]

F. Li, J. J. Zhao, and L. X. Sun, Front. Phys., 2011, 6(2): 214

[10]

M. Li, Y. F. Li, Z. Zhou, and P. W. Shen, Front. Phys., 2011, 6(2): 224

[11]

H. Zhang and X. D. Li, Front. Phys., 2011, 6(2): 231

[12]

X. Zhou, J. Zhou, K. , and Q. Sun, Front. Phys., 2011, 6(2): 220

[13]

J. H. Lan, D. P. Cao, and W. C. Wang, J. Phys. Chem. C, 2010, 114(7): 3108

[14]

Z. J. Shi, Y. F. Lian, X. H. Zhou, Z. N. Gu, Y. G. Zhang, S. Iijima, L. X. Zhou, K. T. Yue, and S. L. Zhang, Carbon, 1999, 37(9): 1449

[15]

A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 1996, 273(5274): 483

[16]

H. J. Jeong, K. H. An, S. C. Lim, M. S. Park, J. S. Chang, and Y. H. Lee, Chem. Phys. Lett., 2003, 380(3): 263

[17]

C. Jo, C. Kim, and Y. H. Lee, Phys. Rev. B, 2002, 65(3): 035420

[18]

J. J. Zhao, A. Buldum, J. Han, and J. P. Lu, Phys. Rev. Lett., 2000, 85(8): 1706

[19]

J. W. Zheng, S. M. L. Nai, M. F. Ng, P. Wu, J. Wei, and M. Gupta, J. Phys. Chem. C, 2009, 113(3): 14015

[20]

E. Durgun, S. Dag, V. M. K. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci, Phys. Rev. B, 2003, 67(20): 201401

[21]

E. Durgun, S. Dag, S. Ciraci, and O. Gülseren, J. Phys. Chem. B, 2004, 108(2): 575

[22]

Y. L. Mao, X. H. Yan, and Y. Xiao, Nanotechnology, 2005, 16(12): 3092

[23]

A. Vdomveoh, T. Kerecharoen, and T. Osotchan, Chem. Phys. Lett., 2005, 406(2): 161

[24]

Y. J. Kang, J. Choi, C. Y. Moon, and K. J. Chang, Phys. Rev. B, 2005, 71(11): 115411

[25]

V. V. Ivanovskaya, C. Köhler, and G. Seifert, Phys. Rev. B, 2007, 75(7): 075410

[26]

X. X. Wang, X. H. Yan, and Y. Xiao, Nanotechnology, 2005, 16(12): 3092

[27]

J. C. Xie, Y. J. Tang, and H. Zhang, Cent. Eur. J. Phys., 2010, 9(3): 716

[28]

Z. W. Zhang, J. C. Li, and Q. Jiang, J. Phys. Chem. C, 2010, 114(8): 7733

[29]

J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45(23): 13244

[30]

B. Delley, J. Chem. Phys., 2000, 113(18): 7756

[31]

Y. Luo, J. Baldamus, O. Tardif, and Z. Hou, Organometallics, 2005, 24(18): 4362

[32]

C. M. Fang, J. Bauer, J. Y. Saillard, and J. F. Halet, J. Solid State Chem., 2007, 180(9): 2465

[33]

A. Delin, P. M. Oppeneer, M. S. S. Brooks, T. Kraft, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B, 1997, 55(16): R10173

[34]

S. J. S. Jalali Asadabadi and H. Akbarzadeh, Physica B, 2004, 76(4): 349

[35]

A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguín, Phys. Rev. B, 2008, 78(13): 035107

[36]

A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Phys. Rev. B, 1998, 58(8): 4345

[37]

B. Delley, Phys. Rev. B, 2002, 66(15): 155125

[38]

H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13(12): 5188

[39]

O. Gülseren, T. Yildirim, and S. Ciraci, Phys. Rev. Lett., 2001, 87(11): 116802

[40]

H. Kuramochi, T. Vzumaki, M. Yamka, H. Akinaga, and H. Yokoyama, Nanotechnology, 2005, 16(1): 24

[41]

L. Zhu, K. L. Yao, and Z. L. Liu, Solid State Commun., 2007, 141(11): 628

[42]

G. L. Lu, K. M. Deng, H. P. Wu, J. L. Yang, and X. Wang, J. Chem. Phys., 2006, 124(5): 054305

[43]

X. Blasé, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev. Lett., 1994, 72(12): 1878

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (652KB)

981

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/