First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs

Shun-li Yue, Hong Zhang

PDF(652 KB)
PDF(652 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 353-359. DOI: 10.1007/s11467-011-0209-9
RESEARCH ARTICLE
RESEARCH ARTICLE

First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs

Author information +
History +

Abstract

The adsorptions of rare-earth (RE) atoms on (6, 0) and (8, 0) single-walled carbon nanotubes (SWCNTs) have been investigated by using the first-principles pseudopotential plane wave method within density functional theory (DFT). The binding energy, Mulliken charge, magnetic properties, band structure and DOS were calculated and analyzed. Most of RE atoms including Nd, Sm and Eu have a magnetic ground state with a significant magnetic moment. Some electrons transfer between RE-5d, 6s and C-2p orbitals. Owing to the curvature effect, the values of binding energy for RE atoms doped (6, 0) SWCNT are lower than those of the same atoms on (8, 0) SWCNT. The pictures of DOS show that hybridizations between RE-5d, 6s states and C-2p orbitals and between RE-4f and C-2p orbitals appear near the Fermi level. Results indicate that the properties of SWCNTs can be modified by the adsorptions of RE atoms.

Keywords

DFT / RE atoms / single-walled carbon nanotubes (SWCNTs) / doping

Cite this article

Download citation ▾
Shun-li Yue, Hong Zhang. First principles study on magnetic and electronic properties with rare-earth atoms doped SWCNTs. Front. Phys., 2012, 7(3): 353‒359 https://doi.org/10.1007/s11467-011-0209-9

References

[1]
S. Iijima, Nature, 1991, 354(7): 56
CrossRef ADS Google scholar
[2]
M. S. Dresselhaus, G. Presselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Heidelberg: Springer, 2001
CrossRef ADS Google scholar
[3]
Z. X. Guo and X. G. Gong, Front. Phys. China, 2009, 4(3): 389
CrossRef ADS Google scholar
[4]
P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Trans. Nanotech., 2002, 1 (1): 78
CrossRef ADS Google scholar
[5]
Y. C. Sui, R. Skomski, K. D. Sorge, and D. J. Sellmyer, Appl. Phys. Lett., 2004, 84(9): 1525
CrossRef ADS Google scholar
[6]
T. Yildirim and S. Ciraci, Phys. Rev. Lett., 2005, 94(17): 175501
CrossRef ADS Google scholar
[7]
W. Z. Lia, C. H. Liang, J. S. Qiu, W. J. Zhou, H. M. Han, Z. B. Wei, G. Q. Sun, and Q. Xin, Carbon, 2002, 40(5): 791
CrossRef ADS Google scholar
[8]
Y. Yagi, T. M. Briere, M. H. F. Sluiter, V. Kumar, A. A. Farajian, and Y. Kawazoe, Phys. Rev. B, 2004, 69(7): 075414
CrossRef ADS Google scholar
[9]
F. Li, J. J. Zhao, and L. X. Sun, Front. Phys., 2011, 6(2): 214
[10]
M. Li, Y. F. Li, Z. Zhou, and P. W. Shen, Front. Phys., 2011, 6(2): 224
[11]
H. Zhang and X. D. Li, Front. Phys., 2011, 6(2): 231
[12]
X. Zhou, J. Zhou, K. Lü, and Q. Sun, Front. Phys., 2011, 6(2): 220
[13]
J. H. Lan, D. P. Cao, and W. C. Wang, J. Phys. Chem. C, 2010, 114(7): 3108
CrossRef ADS Google scholar
[14]
Z. J. Shi, Y. F. Lian, X. H. Zhou, Z. N. Gu, Y. G. Zhang, S. Iijima, L. X. Zhou, K. T. Yue, and S. L. Zhang, Carbon, 1999, 37(9): 1449
CrossRef ADS Google scholar
[15]
A. Thess, R. Lee, P. Nikolaev, H. J. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, Science, 1996, 273(5274): 483
CrossRef ADS Google scholar
[16]
H. J. Jeong, K. H. An, S. C. Lim, M. S. Park, J. S. Chang, and Y. H. Lee, Chem. Phys. Lett., 2003, 380(3): 263
CrossRef ADS Google scholar
[17]
C. Jo, C. Kim, and Y. H. Lee, Phys. Rev. B, 2002, 65(3): 035420
CrossRef ADS Google scholar
[18]
J. J. Zhao, A. Buldum, J. Han, and J. P. Lu, Phys. Rev. Lett., 2000, 85(8): 1706
CrossRef ADS Google scholar
[19]
J. W. Zheng, S. M. L. Nai, M. F. Ng, P. Wu, J. Wei, and M. Gupta, J. Phys. Chem. C, 2009, 113(3): 14015
CrossRef ADS Google scholar
[20]
E. Durgun, S. Dag, V. M. K. Bagci, O. Gülseren, T. Yildirim, and S. Ciraci, Phys. Rev. B, 2003, 67(20): 201401
CrossRef ADS Google scholar
[21]
E. Durgun, S. Dag, S. Ciraci, and O. Gülseren, J. Phys. Chem. B, 2004, 108(2): 575
CrossRef ADS Google scholar
[22]
Y. L. Mao, X. H. Yan, and Y. Xiao, Nanotechnology, 2005, 16(12): 3092
CrossRef ADS Google scholar
[23]
A. Vdomveoh, T. Kerecharoen, and T. Osotchan, Chem. Phys. Lett., 2005, 406(2): 161
[24]
Y. J. Kang, J. Choi, C. Y. Moon, and K. J. Chang, Phys. Rev. B, 2005, 71(11): 115411
CrossRef ADS Google scholar
[25]
V. V. Ivanovskaya, C. Köhler, and G. Seifert, Phys. Rev. B, 2007, 75(7): 075410
CrossRef ADS Google scholar
[26]
X. X. Wang, X. H. Yan, and Y. Xiao, Nanotechnology, 2005, 16(12): 3092
CrossRef ADS Google scholar
[27]
J. C. Xie, Y. J. Tang, and H. Zhang, Cent. Eur. J. Phys., 2010, 9(3): 716
CrossRef ADS Google scholar
[28]
Z. W. Zhang, J. C. Li, and Q. Jiang, J. Phys. Chem. C, 2010, 114(8): 7733
CrossRef ADS Google scholar
[29]
J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45(23): 13244
CrossRef ADS Google scholar
[30]
B. Delley, J. Chem. Phys., 2000, 113(18): 7756
CrossRef ADS Google scholar
[31]
Y. Luo, J. Baldamus, O. Tardif, and Z. Hou, Organometallics, 2005, 24(18): 4362
CrossRef ADS Google scholar
[32]
C. M. Fang, J. Bauer, J. Y. Saillard, and J. F. Halet, J. Solid State Chem., 2007, 180(9): 2465
CrossRef ADS Google scholar
[33]
A. Delin, P. M. Oppeneer, M. S. S. Brooks, T. Kraft, J. M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B, 1997, 55(16): R10173
CrossRef ADS Google scholar
[34]
S. J. S. Jalali Asadabadi and H. Akbarzadeh, Physica B, 2004, 76(4): 349
[35]
A. Rubio-Ponce, A. Conde-Gallardo, and D. Olguín, Phys. Rev. B, 2008, 78(13): 035107
CrossRef ADS Google scholar
[36]
A. Delin, L. Fast, B. Johansson, O. Eriksson, and J. M. Wills, Phys. Rev. B, 1998, 58(8): 4345
CrossRef ADS Google scholar
[37]
B. Delley, Phys. Rev. B, 2002, 66(15): 155125
CrossRef ADS Google scholar
[38]
H. J. Monkhorst and J. D. Pack, Phys. Rev. B, 1976, 13(12): 5188
CrossRef ADS Google scholar
[39]
O. Gülseren, T. Yildirim, and S. Ciraci, Phys. Rev. Lett., 2001, 87(11): 116802
CrossRef ADS Google scholar
[40]
H. Kuramochi, T. Vzumaki, M. Yamka, H. Akinaga, and H. Yokoyama, Nanotechnology, 2005, 16(1): 24
CrossRef ADS Google scholar
[41]
L. Zhu, K. L. Yao, and Z. L. Liu, Solid State Commun., 2007, 141(11): 628
CrossRef ADS Google scholar
[42]
G. L. Lu, K. M. Deng, H. P. Wu, J. L. Yang, and X. Wang, J. Chem. Phys., 2006, 124(5): 054305
CrossRef ADS Google scholar
[43]
X. Blasé, L. X. Benedict, E. L. Shirley, and S. G. Louie, Phys. Rev. Lett., 1994, 72(12): 1878
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(652 KB)

Accesses

Citations

Detail

Sections
Recommended

/