A novel snowdrift game model with edge weighting mechanism on the square lattice
, , , , , ,
A novel snowdrift game model with edge weighting mechanism on the square lattice
We propose a novel snowdrift game model with edge weighting mechanism to explore the cooperative behaviors among the players on the square lattice. Based on the assumption of three types of weight distribution including uniform, exponential and power-law schemes, the cooperation level is largely boosted in contrast with the traditional snowdrift game on the unweighted square lattice. Extensive numerical simulations indicate that the fraction of cooperators greatly augments, especially for the intermediate range of cost-to-benefit ratio r. Furthermore, we investigate how the cooperative behaviors are affected by the undulation amplitude of weight distribution and noise strength of strategy selection, respectively. The simulation results will be conducive to further understanding and analyzing the emergence of cooperation, which is a ubiquitous phenomenon in social and biological science.
snowdrift game / edge weighting mechanism / cooperative dynamics
[1] |
A. M. Colman, Game Theory and Its Applications in the Social and Biological Sciences, Oxford: Oxford University Press, 1995
|
[2] |
J. M. Smith, Evolution and the Theory of Games, Cambridge: Cambridge University Press, 1982
|
[3] |
G. Szabó and G. Fáth, Phys. Rep., 2007, 46: 97
|
[4] |
R. Axelrod and W. D. Hamilton, Science, 1981, 211: 1390
CrossRef
ADS
Google scholar
|
[5] |
M. A. Nowak and K. Sigmund, Nature (London), 1998, 393: 573
CrossRef
ADS
Google scholar
|
[6] |
W. D. Hamilton, J. Theor. Biol., 1964, 7: 1
CrossRef
ADS
Google scholar
|
[7] |
M. Perc and A. Szolnoki, Phys. Rev. E, 2008, 77: 011904
CrossRef
ADS
Google scholar
|
[8] |
R. Boyd, H. Gintis, S. Bowles, and P. J. Richerson, Proc. Natl. Acad. Sci. USA, 2003, 100: 3531
CrossRef
ADS
Google scholar
|
[9] |
H. F. Zhang, R. R. Liu, Z. Wang, and B. H. Wang, Europhys. Lett., 2011, 94: 18006
CrossRef
ADS
Google scholar
|
[10] |
Z. Wang and M. Perc, Phys. Rev. E, 2010, 82: 021115
CrossRef
ADS
Google scholar
|
[11] |
M. Perc and Z. Wang, PLoS One, 2010, 5: e15117
CrossRef
ADS
Google scholar
|
[12] |
X. B. Cao, W. B. Du, and Z. H. Rong, Physica A, 2010, 389: 1273
CrossRef
ADS
Google scholar
|
[13] |
Z. Wang, Z. J. Xu, and L. Z. Zhang, Chin. Phys. B, 2010, 19: 110201
CrossRef
ADS
Google scholar
|
[14] |
C. Hauert and M. Doebeli, Nature(London), 2004, 428: 643
CrossRef
ADS
Google scholar
|
[15] |
M. Sys-Aho, J. Saramäki J, J. Kertész, and K. Kaski, Eur. Phys. J. B, 2005, 44: 129
|
[16] |
M. G. Zimmermann, V. Eguíluz, and M. S. Miguel, Phys. Rev. E, 2004, 69: 065102R
CrossRef
ADS
Google scholar
|
[17] |
Z. Wang, A. Murks, W. B. Du, Z. H. Rong, and M. Perc, J. Theor. Biol., 2011, 277: 19
CrossRef
ADS
Google scholar
|
[18] |
A. Szolnoki and M. Perc, New J. Phys., 2008, 10: 043036
CrossRef
ADS
Google scholar
|
[19] |
P. Holme and G. Ghostal, Phys. Rev. Lett., 2006, 96: 098701
CrossRef
ADS
Google scholar
|
[20] |
J. M. Pacheco, A. Traulsen, and M. A. Nowak, Phys. Rev. Lett., 2006, 97: 258103
CrossRef
ADS
Google scholar
|
[21] |
Z. J. Xu, Z. Wang, and L. Z. Zhang, Phys. Rev. E, 2009, 80: 061104
CrossRef
ADS
Google scholar
|
[22] |
W. B. Du, X. B. Cao, H. X. Yang, and M. B. Hu, Chin. Phys. B, 2010, 19: 010204
|
[23] |
Z. Wang, Z. J. Xu, J. H. Huang, and L. Z. Zhang, Chin. Phys. B, 2010, 19: 100204
CrossRef
ADS
Google scholar
|
[24] |
F. Feng, T. Wu, and L. Wang, Phys. Rev. E, 2009, 79: 036101
CrossRef
ADS
Google scholar
|
[25] |
J. Poncela, J. Gómez-Gardeñes, L. M. Floría, A. Sanchez, and Y. Moreno, PLoS One, 2008, 3: e2449
CrossRef
ADS
Google scholar
|
[26] |
J. Poncela, J. Gómez-Gardeñes, Y. Moreno, and A. Traulsen, New J. Phys., 2009, 11: 083031
CrossRef
ADS
Google scholar
|
[27] |
J. Poncela, J. Gómez-Gardeñes, L. M. Floría, Y. Moreno, and A. Sanchez, Europhys. Lett., 2009, 88: 38003
CrossRef
ADS
Google scholar
|
[28] |
X. J. Xu, Z. X. Wu, and Y. H. Wang, Chin. Phys. Lett., 2005, 22: 1548
CrossRef
ADS
Google scholar
|
[29] |
L. Huang, Y. C. Lai, K. Park, X. G. Wang, C. H. Lai, and R. A. Gatenby, Front. Phys. China, 2007, 2:446
CrossRef
ADS
Google scholar
|
[30] |
M. Zhao, T. Zhou, G. R. Chen, and B. H. Wang, Front. Phys. China, 2007, 2: 460
CrossRef
ADS
Google scholar
|
[31] |
Z. G. Zheng, X. Q. Feng, B. Ao, and M. C. Cross, Front. Phys. China, 2006, 1: 458
CrossRef
ADS
Google scholar
|
[32] |
R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett., 2001, 86: 3200
CrossRef
ADS
Google scholar
|
[33] |
J. Zhou and Z. H. Liu, Front. Phys. China, 2008, 3: 331
CrossRef
ADS
Google scholar
|
[34] |
M. Tang, L. Liu, and Z. H. Liu, Phys. Rev. E, 2009, 79: 016108
CrossRef
ADS
Google scholar
|
[35] |
M. Tang, Z. H. Liu, and B. W. Li, Euro. Phys. Lett., 2009, 87: 18005
CrossRef
ADS
Google scholar
|
[36] |
X. H. Liao, Y. Qian, Y. Y. Mi, Q. Z. Xia, X. Q. Huang, and G. Hu, Front. Phys., 2011, 6: 124
CrossRef
ADS
Google scholar
|
[37] |
M. E. J. Newman, Proc. Natl. Acad. Sci. USA, 2001, 98: 404
CrossRef
ADS
Google scholar
|
[38] |
A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, Proc. Natl. Acad. Sci. USA, 2004, 101: 3747
CrossRef
ADS
Google scholar
|
[39] |
Z. H. Rong, X. Li, and X. F. Wang, Phys. Rev. E, 2007, 76: 027101
CrossRef
ADS
Google scholar
|
[40] |
J. Gómez-Gardeñes, M. Campillo, F. Floría, and Y. Moreno, Phys. Rev. Lett., 2007, 98: 108103
|
[41] |
Z. H. Rong and Z. X. Wu, Europhys. Lett., 2009, 87: 30001
CrossRef
ADS
Google scholar
|
[42] |
C. Y. Xia, J. Zhao, J. Wang, Y. L. Wang, and H. Zhang, Phys. Scr., 2011, 84: 025802
CrossRef
ADS
Google scholar
|
[43] |
G. Szabó and C. Toke, Phys. Rev. E, 1998, 58: 69
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |