Quantum spin Hall effect in inverted InAs/GaSb quantum wells

Ivan Knez, Rui-Rui Du

PDF(479 KB)
PDF(479 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (2) : 200-207. DOI: 10.1007/s11467-011-0204-1
REVIEW ARTICLE
REVIEW ARTICLE

Quantum spin Hall effect in inverted InAs/GaSb quantum wells

Author information +
History +

Abstract

We review the recent experimental progress towards observing quantum spin Hall effect in inverted InAs/GaSb quantum wells (QWs). Low temperature transport measurements in the hybridization gap show bulk conductivity of a non-trivial origin, while the length and width dependence of conductance in this regime show strong evidence for the existence of helical edge modes proposed by Liu et al. [Phys. Rev. Lett., 2008, 100: 236601]. Surprisingly, edge modes persist in spite of comparable bulk conduction and show only weak dependence on magnetic field. We elucidate that seeming independence of edge on bulk transport comes due to the disparity in Fermi-wave vectors between the bulk and the edge, leading to a total internal reflection of the edge modes.

Keywords

quantum spin Hall effect / InAs/GaSb quantum wells / topological insulators

Cite this article

Download citation ▾
Ivan Knez, Rui-Rui Du. Quantum spin Hall effect in inverted InAs/GaSb quantum wells. Front. Phys., 2012, 7(2): 200‒207 https://doi.org/10.1007/s11467-011-0204-1

References

[1]
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys., 2010, 82: 3045
CrossRef ADS Google scholar
[2]
X. L. Qi and S.C. Zhang, arXiv:1008.2026, 2010
[3]
C. L. Kane and E. J. Mele, Phys. Rev. Lett., 2005, 95: 226801
CrossRef ADS Google scholar
[4]
B. A. Bernevig and S. C. Zhang, Phys. Rev. Lett., 2006, 96: 106802
CrossRef ADS Google scholar
[5]
B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science, 2006, 314: 1757
CrossRef ADS Google scholar
[6]
M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X. L. Qi, and S. C. Zhang, Science, 2007, 318: 766
CrossRef ADS Google scholar
[7]
D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature, 2008, 452: 970
CrossRef ADS Google scholar
[8]
P. RoushanJ SeoC. V. Parker, Y. S. Hor, D. Hsieh, D. Qian, A. Richardella, M. Z. Hasan1, R. J. Cava, and A. Yazdani, Nature, 2009, 460: 1106
[9]
P. Cheng, C. Song, T. Zhang, Y. Zhang, Y. Wang, J. F. Jia, J.Wang, Y. Wang, B. F. Zhu, X. Chen, X. C.Ma, K. He, L. Wang, X. Dai, Z. Fang, X. C. Xie, X. L. Qi, C. X. Liu, S. C. Zhang, and Q. K. Xue, Phys. Rev. Lett., 2010, 105: 076801
CrossRef ADS Google scholar
[10]
C. Liu, T. L. Hughes, X. L. Qi, K. Wang, and S. C. Zhang, Phys. Rev. Lett., 2008, 100: 236601
CrossRef ADS Google scholar
[11]
I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. B, 2010, 81: 201301(R)
CrossRef ADS Google scholar
[12]
I. Knez, R. R. Du, and G. Sullivan, Phys. Rev. Lett., 2011, 107: 136603
CrossRef ADS Google scholar
[13]
I. Y. Naveh and B. Laikhtman, Appl. Phys. Lett., 1995, 66: 1980
CrossRef ADS Google scholar
[14]
C. Nguyen, J. Werking, H. Kroemer, and E. L. Hu, Appl. Phys. Lett., 1990, 57: 87
CrossRef ADS Google scholar
[15]
L. Fu and C. L. Kane, Phys. Rev. Lett., 2008, 100: 096407
CrossRef ADS Google scholar
[16]
H. Kroemer, Physica E, 2004, 20: 196
CrossRef ADS Google scholar
[17]
See: e.g., S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge: Cambridge University Press, 1995
[18]
M. Yang, C. Yang, B. Bennett, and B. Shanabrook, Phys. Rev. Lett., 1997, 78: 4613
CrossRef ADS Google scholar
[19]
L. Cooper, N. Patel, V. Drouot, E. Linfield, D. Ritchie, and M. Pepper, Phys. Rev. B, 1998, 57: 11915
CrossRef ADS Google scholar
[20]
J. Kono, B. D. McCombe, I. Lo, W. C. Mitchel, and C. E. Stutz, Phys. Rev. B, 1997, 55: 1617
CrossRef ADS Google scholar
[21]
M. J. Yang, C. H. Yang, and B. R. Bennett, Phys. Rev. B, 1999, 60: R13958
[22]
Y. Naveh and B. Laikhtman, Europhys. Lett., 2001, 55: 545
CrossRef ADS Google scholar
[23]
A. Caldeira and A. J. Legett, Phys. Rev. Lett., 1981, 46: 211
CrossRef ADS Google scholar
[24]
C. Nguyen, B. Brar, C. R. Bolognesi, J. J. Pekarik, H. Kroemer, and J. H. English, J. Electron. Mater., 1993, 22: 255
CrossRef ADS Google scholar
[25]
E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishnan, Phys. Rev. Lett., 1979, 42: 673
CrossRef ADS Google scholar
[26]
B. Zhou, H. Z. Lu, R. L. Chu, S. Q. Shen, and Q. Niu, Phys. Rev. Lett., 2008, 101: 246807
CrossRef ADS Google scholar
[27]
J. I. Väyrynen and T. Ojanen, Phys. Rev. Lett., 2011, 106: 076803
CrossRef ADS Google scholar
[28]
J. Maciejko, X. L. Qi, and S. C. Zhang, Phys. Rev. B, 2010, 82: 155310
CrossRef ADS Google scholar
[29]
M. Konig, Ph. D. Thesis, Wurzburg University, 2007, private communications
[30]
R. J. Nicholas, K. Takashina, M. Lakrimi, B. Kardynal, S. Khym, N. J. Mason, D. M. Symons, D. K. Maude, and J. C. Portal, Phys. Rev. Lett., 2000, 85: 2364
CrossRef ADS Google scholar
[31]
I. Knez, R. R. Du, and G. Sullivan, to be published

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(479 KB)

Accesses

Citations

Detail

Sections
Recommended

/