Doppler-free spectroscopy of rubidium atoms driven by a control laser

, , , , , , ,

PDF(339 KB)
PDF(339 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 311-314. DOI: 10.1007/s11467-011-0192-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Doppler-free spectroscopy of rubidium atoms driven by a control laser

  • 1,2,3
  • 1,2,3
  • 1,2,3
  • 1,2
  • 1,2
  • 1,2
  • 1,2
  • 1,2
Author information +
History +

Abstract

A scheme of Doppler-free spectroscopy is experimentally demonstrated with a co-propagating control laser locking to an atomic hyperfine transition, and the differential transmission of the probe and the reference laser is detected. Crossover resonances are eliminated by selecting the class of atoms with zero velocity in the direction of beam propagation. In addition, the sub-Doppler spectrum experiences optical gain compared to the conventional saturated-absorption spectrum as a result of optical pumping.

Keywords

Doppler-free spectroscopy / crossover resonances / optical pumping

Cite this article

Download citation ▾
, , , , , , , . Doppler-free spectroscopy of rubidium atoms driven by a control laser. Front. Phys., 2012, 7(3): 311‒314 https://doi.org/10.1007/s11467-011-0192-1

References

[1]
W. Demtröder, Laser Spectroscopy, Berlin: Springer, 1998
[2]
K. B. MacAdam, A. Steinbach, and C. E. Wieman, Am. J. Phys., 1992, 60(12): 1098
CrossRef ADS Google scholar
[3]
D. A. Smith and I. G. Hughes, Am. J. Phys., 2004, 72(5): 631
CrossRef ADS Google scholar
[4]
O. Schmidt, K. M. Knaak, R. Wynands, and D. Meschede, Appl. Phys. B, 1994, 59(2): 167
CrossRef ADS Google scholar
[5]
C. Wieman and T. W. Hänsch, Phys. Rev. Lett., 1976, 36(20): 1170
CrossRef ADS Google scholar
[6]
M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, Phys. Rev. A, 2006, 73(6): 062509
CrossRef ADS Google scholar
[7]
H. D. Do, G. Moon, and H. R. Noh, Phys. Rev. A, 2008, 77(3): 032513
CrossRef ADS Google scholar
[8]
C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, J. Phys. B, 2002, 35(24): 5141
CrossRef ADS Google scholar
[9]
Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga, Appl. Opt., 2003, 42(33): 6645
CrossRef ADS Google scholar
[10]
A. Onae, K. Okumura, J. Yoda, and K. Nakagawa, Conference on Precision Electromagnetic Measurements, in CPEM Digest, 1996, 17-20: 317
[11]
A. Banerjee and V. Natarajan, Opt. Lett., 2003, 28(20): 1912
CrossRef ADS Google scholar
[12]
S. Briaudeau, D. Bloch, and M. Ducloy, Phys. Rev. A, 1999, 59(5): 3723
CrossRef ADS Google scholar
[13]
A. Sargsyan, D. Sarkisyan, A. Papoyan, Y. Pashayan-Leroy, P. Moroshkin, A. Weis, A. Khanbekyan, E. Mariotti, and L. Moi, Laser Phys., 2008, 18(6): 749
CrossRef ADS Google scholar
[14]
Y. F. Zhu and T. N. Wasserlauf, Phys. Rev. A, 1999, 54(4): 3653
CrossRef ADS Google scholar
[15]
U. D. Rapol, A. Wasan, and V. Natarajan, Phys. Rev. A, 2003, 67(5): 053802
CrossRef ADS Google scholar
[16]
G. C. Bjorklund and M. Levenson, Phys. Rev. A, 1981, 24(1): 166
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(339 KB)

Accesses

Citations

Detail

Sections
Recommended

/