Enhanced scattering of acoustic waves at interfaces

, , , ,

PDF(387 KB)
PDF(387 KB)
Front. Phys. ›› 2012, Vol. 7 ›› Issue (3) : 319-323. DOI: 10.1007/s11467-011-0191-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Enhanced scattering of acoustic waves at interfaces

  • 1
  • 1
  • 2
  • 3
  • 1
Author information +
History +

Abstract

We propose a general method to realize a total scattering of an incident acoustic wave at interfaces between different media while allowing the flow of air, fluids and/or particles. This originates from the enlargement of the equivalent acoustic scattering cross section of an embedded object coated with acoustic metamaterials, which causes the coated object to behave as a scatterer bigger than its physical size. We theoretically design a model circular cylindrical object coated with such metamaterials whose properties are determined according to two different, but identical, methods. The desired function is confirmed for both far-field and near-field cases with full wave simulations based on the finite element method. This work reveals a promising way to achieve noise shielding and naval camouflage.

Keywords

superscattering / acoustic waves / finite element simulations

Cite this article

Download citation ▾
, , , , . Enhanced scattering of acoustic waves at interfaces. Front. Phys., 2012, 7(3): 319‒323 https://doi.org/10.1007/s11467-011-0191-2

References

[1]
U. Leonhardt, Science, 2006, 312(5781): 1777
CrossRef ADS Google scholar
[2]
J. B. Pendry, D. Schurig, and D. R. Smith, Science, 2006, 312(5781): 1780
CrossRef ADS Google scholar
[3]
D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science, 2006, 314(5801): 977
CrossRef ADS Google scholar
[4]
W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, Nat. Photonics, 2007, 1(4): 224
CrossRef ADS Google scholar
[5]
X. F. Xu, Y. J. Feng, L. Zhao, T. Jiang, C. H. Lu, and Z. Z. Xu, J. Phys D, 2008, 41: 215504
CrossRef ADS Google scholar
[6]
Y. Luo, J. J. Zhang, H. S. Chen, and B. I. Wu, J. Phys. D, 2008, 41: 235101
CrossRef ADS Google scholar
[7]
W. X. Jiang, T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, J. Phys. D, 2008, 41: 085504
CrossRef ADS Google scholar
[8]
Q. Wu, K. Zhang, F. Y. Meng, and L. W. Li, J. Phys. D, 2009, 42: 035408
CrossRef ADS Google scholar
[9]
D. Bao, E. Kallos, W. X. Tang, C. Argyropoulos, Y. Hao, and T. J. Cui, Front. Phys. China, 2009, 5(3): 319
CrossRef ADS Google scholar
[10]
Y. Lai, J. Ng, H. Y. Chen, Z. Q. Zhang, and C. T. Chan, Front. Phys. China, 2010, 5(3): 308
CrossRef ADS Google scholar
[11]
T. Yang, H. Chen, X. Luo, and H. Ma, Opt. Express, 2008, 16(22): 18545
CrossRef ADS Google scholar
[12]
X. Luo, T. Yang, Y. Gu, and H. Ma, arXiv:0809.1823v1, 2008
[13]
http://www.nature.com/news/2008/080919/full/news. 2008. 1113.html
[14]
H. Chen, X. Zhang, X. Luo, H. Ma, and C. T. Chan, New J. Phys., 2008, 10(11): 113016
CrossRef ADS Google scholar
[15]
Z. Liu, X. Zhang, Y. Mao, Y. Y. Zhu, Z. Yang, C. T. Chan, and P. Sheng, Science, 2000, 289(5485): 1734
CrossRef ADS Google scholar
[16]
J. Mei, Z. Liu, W. Wen, and P. Sheng, Phys. Rev. B, 2007, 76(13): 134205
CrossRef ADS Google scholar
[17]
Z. Liu, C. T. Chan, and P. Sheng, Phys. Rev. B, 2005, 71(1): 014103
CrossRef ADS Google scholar
[18]
K. M. Ho, C. K. Cheng, Z. Yang, X. X. Zhang, and P. Sheng, Appl. Phys. Lett., 2003, 83(26): 5566
CrossRef ADS Google scholar
[19]
Z. Liu, C. T. Chan, P. Sheng, A. Goertzen, and J. Page, Phys. Rev. B, 2000, 62(4): 2446
CrossRef ADS Google scholar
[20]
J. Mei, Z. Liu, W. Wen, and P. Sheng, Phys. Rev. Lett., 2006, 96(2): 024301
CrossRef ADS Google scholar
[21]
Z. Yang, J. Mei, M. Yang, N. H. Chan, and P. Sheng, Phys. Rev. Lett., 2008, 101(20): 204301
CrossRef ADS Google scholar
[22]
H. Chen and C. T. Chan, Appl. Phys. Lett., 2007, 91(18): 183518
CrossRef ADS Google scholar
[23]
S. A. Cummer and D. Schurig, New J. Phys., 2007, 9(3): 45
CrossRef ADS Google scholar
[24]
N. Fang, D. Xi, J. Xu, M. Ambati, W. Srituravanich, C. Sun, and X. Zhang, Nat. Mater., 2006, 5(6): 452
CrossRef ADS Google scholar
[25]
S. H. Lee, C. M. Park, Y. M. Seo, Z. G. Wang, and C. K. Kim, J. Phys.: Condens. Matter, 2009, 21(17): 175704
CrossRef ADS Google scholar
[26]
B. Liu and J. P. Huang, Commun. Theor. Phys., 2010, 53: 560
CrossRef ADS Google scholar
[27]
Q. Su, B. Liu, and J. P. Huang, Front. Phys., 2011, 6(1): 65
CrossRef ADS Google scholar
[28]
J. Li and C. T. Chan, Phys. Rev. E, 2004, 70(5 Pt 2): 055602
CrossRef ADS Google scholar
[29]
D. Schurig, J. B. Pendry, and D. R. Smith, Opt. Express, 2006, 14(21): 9794
CrossRef ADS Google scholar
[30]
C. Z. Fan, Y. Gao, and J. P. Huang, Appl. Phys. Lett., 2008, 92(25): 251907
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(387 KB)

Accesses

Citations

Detail

Sections
Recommended

/