Local density of states around two nonmagnetic impurities in cuprate superconductors

Zhan-peng HUANG, Xia-xia WAN, Feng YUAN

PDF(254 KB)
PDF(254 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (3) : 309-312. DOI: 10.1007/s11467-011-0183-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Local density of states around two nonmagnetic impurities in cuprate superconductors

Author information +
History +

Abstract

The local density of states (LDOS) around two nonmagnetic impurities which are located at different sites is studied within the two-dimensional tJU model. The order parameters are determined in a self-consistent way with the Gutzwiller projected mean-field approximation and the Bogoliubov–de Gennes theory. When the two impurities are located one or two sites away, we find the superconductivity coherence peaks are more strongly suppressed and the zero-energy peak (ZEP) has split into two peaks. Whereas when the two impurities are located next to each other, the ZEP vanished, and LDOS does not change a lot compared with the case away from the impurities.

Keywords

local density of states (LDOS) / nonmagnetic impurities / Gutzwiller approximation

Cite this article

Download citation ▾
Zhan-peng HUANG, Xia-xia WAN, Feng YUAN. Local density of states around two nonmagnetic impurities in cuprate superconductors. Front. Phys., 2011, 6(3): 309‒312 https://doi.org/10.1007/s11467-011-0183-2

References

[1]
A. V. Balatsky and D. J. Scalapino, Phys. Rev. Lett., 1996, 77: 1841
CrossRef ADS Google scholar
[2]
A. V. Balatsky, I. Vekhter, and J. X. Zhu, Rev. Mod. Phys., 2006, 78: 373
CrossRef ADS Google scholar
[3]
P. W. Anderson, Science, 1987, 235: 1196
CrossRef ADS Google scholar
[4]
F. C. Zhang and T. M. Rice, Phys. Rev. B, 1988, 37: 3759
CrossRef ADS Google scholar
[5]
F. C. Zhang, Phys. Rev. Lett., 2003, 90: 207002
CrossRef ADS Google scholar
[6]
M. E. Flatte and J. M. Byers, Phys. Rev. Lett., 1997, 78: 3761
CrossRef ADS Google scholar
[7]
M. E. Flatte, Phys. Rev. B, 2000, 61: 14920
CrossRef ADS Google scholar
[8]
F. Yuan, Q. Yuan, and C. S. Ting, Phys. Rev. B, 2005, 71: 104505
CrossRef ADS Google scholar
[9]
J. X. Zhu and C. S. Ting, Phys. Rev. B, 2001, 64: 060501
CrossRef ADS Google scholar
[10]
J. X. Zhu, C. S. Ting, and A. V. Balatsky, Phys. Rev. B, 2002, 66: 064509
CrossRef ADS Google scholar
[11]
B. Liu and Y. Liang, Phys. Rev. B, 2008, 77: 245121
CrossRef ADS Google scholar
[12]
B. Liu, Phys. Rev. B, 2009, 79: 172501
CrossRef ADS Google scholar
[13]
Y. Chen and C. S. Ting, Phys. Rev. Lett., 2004, 92: 077203
CrossRef ADS Google scholar
[14]
A. Yazdani, C. M. Howald, C. P. Lutz, A. Kapitulnik, and D. M. Eigler, Phys. Rev. Lett., 1999, 83: 176
CrossRef ADS Google scholar
[15]
S. H. Pan, E. W. Hudson, K. M. Lang, H. Eisaki, S. Uchida, and J. C. Davis, Nature (London), 2000, 403: 746
CrossRef ADS Google scholar
[16]
E. W. Hudson, K. M. Lang, V. Madhavan, S. H. Pan, H. Eisaki, S. Uchida, and J. C. Davis, Nature (London), 2001, 411: 920
CrossRef ADS Google scholar
[17]
D. J. Derro, E. W. Hudson, K. M. Lang, S. H. Pan, J. C. Davis, J. T. Markert and A. L. de Lozanne, Phys. Rev. Lett., 2002, 88: 097002
CrossRef ADS Google scholar
[18]
D. K. Morr and N. A. Stavropoulos, Phys. Rev. B, 2002, 66: 140508
CrossRef ADS Google scholar
[19]
D. K. Morr, Phys. Rev. Lett., 2004, 93: 089902
CrossRef ADS Google scholar
[20]
D. K. Morr and J. Yoon, Phys. Rev. B, 2006, 73: 224511
CrossRef ADS Google scholar
[21]
A. Paramekanti, M. Randeria, and N. Trivedi, Phys. Rev. Lett., 2001, 87: 217002
CrossRef ADS Google scholar
[22]
F. Yang and T. Li, Phys. Rev. B, 2011, 83: 064524
CrossRef ADS Google scholar
[23]
W. S. Wang, X. M. He, D. Wang, Q. H. Wang, Z. D. Wang, and F. C. Zhang, Phys. Rev. B, 2010, 82: 125105
CrossRef ADS Google scholar
[24]
C. Chen, Y. Chen, Z. D. Wang, and C. S. Ting, Phys. Rev. B, 2010, 82: 174502
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(254 KB)

Accesses

Citations

Detail

Sections
Recommended

/