Optimal phase sensitivity of atomic Ramsey interferometers with coherent spin states

Guang-ri JIN , Yong-chun LIU , Li YOU

Front. Phys. ›› 2011, Vol. 6 ›› Issue (3) : 251 -257.

PDF (274KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (3) : 251 -257. DOI: 10.1007/s11467-011-0180-5
RESEARCH ARTICLE

Optimal phase sensitivity of atomic Ramsey interferometers with coherent spin states

Author information +
History +
PDF (274KB)

Abstract

We present a detailed analysis of phase sensitivity for a nonlinear Ramsey interferometer, which utilize effective mean-field interaction of a two-component Bose–Einstein condensate in phase accumulation. For large enough particle number N and small phase shift ϕ, analytical results of the Ramsey signal and the phase sensitivity are derived for a product coherent state |θ,0. When collisional dephasing is absent, we confirm that the optimal sensitivity scales as 2/N3/2 for polar angle of the initial state θ = π/4 or 3π/4. The best-sensitivity phase satisfies different transcendental equations, depending upon the initial state and the observable being measured after the phase accumulation. In the presence of the collisional dephasing, we show that the N-3/2-scaling rule of the sensitivity maintains with spin operators J^x and J^y measurements. A slightly better sensitivity is attainable for optimal coherent state with θ = π/6 or 5π/6.

Keywords

Ramsey interferometry / phase estimation / Bose–Einstein condensates / phase decay / one-axis twisting model

Cite this article

Download citation ▾
Guang-ri JIN, Yong-chun LIU, Li YOU. Optimal phase sensitivity of atomic Ramsey interferometers with coherent spin states. Front. Phys., 2011, 6(3): 251-257 DOI:10.1007/s11467-011-0180-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. M. Caves, Phys. Rev. D, 1981, 23: 1693

[2]

B. Yurke, S. L. McCall, and J. R. Klauder, Phys. Rev. A, 1986, 33(6): 4033

[3]

M. J. Holland and K. Burnett, Phys. Rev. Lett., 1993, 71: 1355

[4]

T. Kim, O. Pfister, M. J. Holland, J. Noh, and J. L. Hall, Phys. Rev. A, 1998, 57: 4004

[5]

D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A, 1994, 50(1): 67

[6]

D. Leibfried, M. D. Barrett, T. Schaetz, J. Britton, J. Chiaverini, W. M. Itano, J. D. Jost, C. Langer, and D. J. Wineland, Science, 2004, 304: 1476

[7]

M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, Nature, 2004, 429: 161

[8]

V. Giovannetti, S. Lloyd, and L. Maccone, Science, 2004, 306: 1330

[9]

J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, Phys. Rev. A, 1996, 54: R4649

[10]

R. A. Campos, C. C. Gerry, and A. Benmoussa, Phys. Rev. A, 2003, 68: 023810

[11]

P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick, S. D. Huver, H. Lee, and J. P. Dowling, Phys. Rev. Lett., 2010, 104: 103602

[12]

A. Luis, Phys. Lett. A, 2004, 329: 8

[13]

A. M. Rey, L. Jiang, and M. D. Lukin, Phys. Rev. A, 2007, 76: 053617

[14]

S. Boixo, A. Datta, S. T. Flammia, A. Shaji, E. Bagan, and C. M. Caves, Phys. Rev. A, 2008, 77: 012317

[15]

S. Choi and B. Sundaram, Phys. Rev. A, 2008, 77: 053613

[16]

M. J. Woolley, G. J. Milburn, and C. M. Caves, New J. Phys., 2008, 10: 125018

[17]

A. Sørensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Nature, 2001, 409: 63

[18]

T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-Joseph, J. Schmiedmayer, and P. Krüger, Nature Phys., 2005, 1: 57

[19]

Y. Shin, C. Sanner, G.-B. Jo, T. A. Pasquini, M. Saba, W. Ketterle, and D. E. Pritchard, Phys. Rev. A, 2005, 72: 021604(R)

[20]

L. Pezzé, A. Smerzi, G. P. Berman, A. R. Bishop, and L. A. Collins, Phys. Rev. A, 2006, 74: 033610

[21]

A. D. Cronin, J. Schmiedmayer, and D. E. Pritchard, Rev. Mod. Phys., 2009, 81: 1051

[22]

C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler, Nature, 2010, 464: 1165

[23]

M. F. Riedel, P. Böhi, Y. Li, T. W. Hänsch, A. Sinatra, and P. Treutlein, Nature, 2010, 464: 1170

[24]

M. Kitagawa and M. Ueda, Phys. Rev. A, 1993, 47(6): 5138

[25]

A. Imamoglu, M. Lewenstein, and L. You, Phys. Rev. Lett., 1997, 78: 2511

[26]

G. R. Jin, Y. C. Liu, and W. M. Liu, New J. Phys., 2009, 11: 073049

[27]

G. R. Jin, B. B. Wang, and Y. W. Lu, Chin. Phys. B, 2010, 19: 020502

[28]

D. Mahler, P. Joanis, R. Vilim, and H. de Guise, New J. Phys., 2010, 12: 033037

[29]

K. Mølmer and A. Sørensen, Phys. Rev. Lett., 1999, 82: 1835

[30]

L. You, Phys. Rev. Lett., 2003, 90: 030402

[31]

M. Zhang and L. You, Phys. Rev. Lett., 2003, 91: 230404

[32]

A. M. Rey, L. Jiang, M. Fleischhauer, E. Demler, and M. D. Lukin, Phys. Rev. A, 2008, 77: 052305

[33]

A. Widera, O. Mandel, M. Greiner, S. Kreim, T. W. Hänsch, and I. Bloch, Phys. Rev. Lett., 2004, 92: 160406

[34]

A. Widera, S. Trotzky, P. Cheinet, S. Fölling, F. Gerbier, I. Bloch, V. Gritsev, M. D. Lukin, and E. Demler, Phys. Rev. Lett., 2008, 100: 140401

[35]

D. Walls and G. Milburn, Quantum Optics,Berlin: Spinger-Verlag, 1994: 210

[36]

S. F. Huelga, C. Macchiavello, T. Pellizzari, A. K. Ekert, M. B. Plenio, and J. I. Cirac, Phys. Rev. Lett., 1997, 79: 3865

[37]

D. Ulam-Orgikh and M. Kitagawa, Phys. Rev. A, 2001, 64: 052106

[38]

Y. C. Liu, G. R. Jin, and L. You, Phys. Rev. A, 2010, 82: 045601

[39]

J. M. Radcliffe, J. Phys. A, 1971, 4: 313

[40]

F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas, Phys. Rev. A, 1972, 6: 2211

[41]

S. Raghavan, H. Pu, P. Meystre, and N. P. Bigelow, Opt. Commun., 2001, 188: 149

[42]

R. R. Puri and G. S. Agarwal, Phys. Rev. A, 1992, 45: 5073

[43]

T. W. Chen and P. T. Leung, Phys. Rev. A, 2003, 67: 055802

[44]

Y. Khodorkovsky, G. Kurizki, and A. Vardi, Phys. Rev. A, 2009, 80: 023609

[45]

M. G. Genoni, S. Olivares, and M. G. A. Paris, arXiv: 1012.1123v4, 2011

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (274KB)

1274

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/