Ti-doped nano-porous graphene: A material for hydrogen storage and sensor

Sa LI, Hong-min ZHAO, Puru JENA

Front. Phys. ›› 0

PDF(299 KB)
PDF(299 KB)
Front. Phys. ›› DOI: 10.1007/s11467-011-0178-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Ti-doped nano-porous graphene: A material for hydrogen storage and sensor

Author information +
History +

Abstract

Clustering of Ti on carbon nanostructures has proved to be an obstacle in their use as hydrogen storagematerials. Using density functional theory we show that Ti atoms will not cluster at moderate concentrations when doped into nanoporous graphene. Since each Ti atom can bind up to three hydrogen molecules with an average binding energy of 0.54 eV/H2, this material can be ideal for storing hydrogen under ambient thermodynamic conditions. In addition, nanoporous graphene is magnetic with or without Ti doping, but when it is fully saturated with hydrogen, the magnetism disappears. This novel feature suggests that nanoporous graphene cannot only be used for storing hydrogen, but also as a hydrogen sensor.

Keywords

nano-porous graphene / hydrogen storage / hydrogen sensor

Cite this article

Download citation ▾
Sa LI, Hong-min ZHAO, Puru JENA. Ti-doped nano-porous graphene: A material for hydrogen storage and sensor. Front. Phys., https://doi.org/10.1007/s11467-011-0178-z

References

[1]
J. S. Noh, R. K. Agarwal, and J. A. Schwarz, Int. J. Hydrogen Energy, 1987, 12: 693
CrossRef ADS Google scholar
[2]
R. K. Agarwal, J. S. Noh, J. A. Schwarz, and P. Davini, Carbon, 1987, 25: 219
CrossRef ADS Google scholar
[3]
A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature, 1997, 386: 377
CrossRef ADS Google scholar
[4]
C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Science, 1999, 286: 1127
CrossRef ADS Google scholar
[5]
Y. Ye, C. C. Ahn, B. Fultz, J. J. Vajo, and J. J. Zinck, Appl. Phys. Lett., 2000, 77: 2171
CrossRef ADS Google scholar
[6]
A. Chambers, C. Park, R. T. K. Baker, and N. M. Rodriguez, J. Phys. Chem. B, 1998, 102: 4253
CrossRef ADS Google scholar
[7]
K. Murata, K. Kaneko, H. Kanoh, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, and S. Iijima, J. Phys. Chem. B, 2002, 106: 11132
CrossRef ADS Google scholar
[8]
G. G. Tibbetts, G. P. Meisner, and C. H. Olk, Carbon, 2001, 39: 2291
CrossRef ADS Google scholar
[9]
M. Shiraishi, T. Takenobu, and M. Ata, Chem. Phys. Lett., 2003, 367: 633
CrossRef ADS Google scholar
[10]
H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata, and Y. Murakami, Appl. Phys. Lett., 2003, 82: 1105
CrossRef ADS Google scholar
[11]
Q. Y. Wang and J. K. Johnson, J. Chem. Phys., 1999, 110: 577
CrossRef ADS Google scholar
[12]
Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, T. Y. Yan, B. Wen, and P. v. R. Schleyer, J. Phys. Chem. B, 2006, 110: 13363
CrossRef ADS Google scholar
[13]
T. Yildirim and S. Ciraci, Phys. Rev. Lett., 2005, 94: 175501
CrossRef ADS Google scholar
[14]
T. Yildirim, J. Iniguez, and S. Ciraci, Phys. Rev. B, 2005, 72: 153403
CrossRef ADS Google scholar
[15]
Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2005, 94: 155504
CrossRef ADS Google scholar
[16]
Y. H. Kim, Y. F. Zhao, A. Williamson, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2006, 96: 016102
CrossRef ADS Google scholar
[17]
Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc., 2005, 127: 14582
CrossRef ADS Google scholar
[18]
S. Li and P. Jena, Phys. Rev. Lett., 2006, 97: 209601
CrossRef ADS Google scholar
[19]
Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc., 2006, 128: 9741
CrossRef ADS Google scholar
[20]
S. Li and P. Jena, Phys. Rev. B, 2008, 77: 193101
CrossRef ADS Google scholar
[21]
A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6: 183
CrossRef ADS Google scholar
[22]
J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature, 2007, 446: 60
CrossRef ADS Google scholar
[23]
J. S. Arellano, L. M. Molina, A. Rubio, and J. A. Alonso, J. Chem. Phys., 2000, 112: 8114
CrossRef ADS Google scholar
[24]
Y. Okamoto and Y. Miyamoto, J. Phys. Chem. B, 2001, 105: 3470
CrossRef ADS Google scholar
[25]
N. Park, S. Hong, G. Kim, and S. H. Jhi, J. Am. Chem. Soc., 2007, 129: 8999
CrossRef ADS Google scholar
[26]
Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, and J. E. Fischer, J. Am. Chem. Soc., 2005, 127: 16006
CrossRef ADS Google scholar
[27]
G. Yushin, R. Dash, J. Jagiello, J. E. Fischer, and Y. Gogotsi, Adv. Funct. Mater., 2006, 16: 2288
CrossRef ADS Google scholar
[28]
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865
CrossRef ADS Google scholar
[29]
W. Kohn and L. J. Sham, Phys. Rev., 1965, 140: A1133
CrossRef ADS Google scholar
[30]
Y. Y. Sun, K. Lee, L.Wang, Y.-H. Kim, W. Chen, Z. F. Chen, and S. B. Zhang, Phys. Rev. B, 2010, 82: 073401
CrossRef ADS Google scholar
[31]
P. E. Blochl, Phys. Rev. B, 1994, 50: 17953
CrossRef ADS Google scholar
[32]
http://invsee.asu.edu/nmodules/Carbonmod/crystalline.html
[33]
Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, Phys. Rev. B, 2007, 75: 075312
CrossRef ADS Google scholar
[34]
C.-G. Zhang, R. W. Zhang, Z.-X. Wang, Z. Zhou, S. B. Zhang, and Z. F. Chen, Chem. Eur. J., 2009, 15: 5910
CrossRef ADS Google scholar
[35]
T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, Nature, 2001, 413: 716
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(299 KB)

Accesses

Citations

Detail

Sections
Recommended

/