
Ti-doped nano-porous graphene: A material for hydrogen storage and sensor
Sa LI, Hong-min ZHAO, Puru JENA
Front. Phys. ›› 0
Ti-doped nano-porous graphene: A material for hydrogen storage and sensor
Clustering of Ti on carbon nanostructures has proved to be an obstacle in their use as hydrogen storagematerials. Using density functional theory we show that Ti atoms will not cluster at moderate concentrations when doped into nanoporous graphene. Since each Ti atom can bind up to three hydrogen molecules with an average binding energy of 0.54 eV/H2, this material can be ideal for storing hydrogen under ambient thermodynamic conditions. In addition, nanoporous graphene is magnetic with or without Ti doping, but when it is fully saturated with hydrogen, the magnetism disappears. This novel feature suggests that nanoporous graphene cannot only be used for storing hydrogen, but also as a hydrogen sensor.
nano-porous graphene / hydrogen storage / hydrogen sensor
[1] |
J. S. Noh, R. K. Agarwal, and J. A. Schwarz, Int. J. Hydrogen Energy, 1987, 12: 693
CrossRef
ADS
Google scholar
|
[2] |
R. K. Agarwal, J. S. Noh, J. A. Schwarz, and P. Davini, Carbon, 1987, 25: 219
CrossRef
ADS
Google scholar
|
[3] |
A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature, 1997, 386: 377
CrossRef
ADS
Google scholar
|
[4] |
C. Liu, Y. Y. Fan, M. Liu, H. T. Cong, H. M. Cheng, and M. S. Dresselhaus, Science, 1999, 286: 1127
CrossRef
ADS
Google scholar
|
[5] |
Y. Ye, C. C. Ahn, B. Fultz, J. J. Vajo, and J. J. Zinck, Appl. Phys. Lett., 2000, 77: 2171
CrossRef
ADS
Google scholar
|
[6] |
A. Chambers, C. Park, R. T. K. Baker, and N. M. Rodriguez, J. Phys. Chem. B, 1998, 102: 4253
CrossRef
ADS
Google scholar
|
[7] |
K. Murata, K. Kaneko, H. Kanoh, D. Kasuya, K. Takahashi, F. Kokai, M. Yudasaka, and S. Iijima, J. Phys. Chem. B, 2002, 106: 11132
CrossRef
ADS
Google scholar
|
[8] |
G. G. Tibbetts, G. P. Meisner, and C. H. Olk, Carbon, 2001, 39: 2291
CrossRef
ADS
Google scholar
|
[9] |
M. Shiraishi, T. Takenobu, and M. Ata, Chem. Phys. Lett., 2003, 367: 633
CrossRef
ADS
Google scholar
|
[10] |
H. Kajiura, S. Tsutsui, K. Kadono, M. Kakuta, M. Ata, and Y. Murakami, Appl. Phys. Lett., 2003, 82: 1105
CrossRef
ADS
Google scholar
|
[11] |
Q. Y. Wang and J. K. Johnson, J. Chem. Phys., 1999, 110: 577
CrossRef
ADS
Google scholar
|
[12] |
Z. Zhou, J. J. Zhao, Z. F. Chen, X. P. Gao, T. Y. Yan, B. Wen, and P. v. R. Schleyer, J. Phys. Chem. B, 2006, 110: 13363
CrossRef
ADS
Google scholar
|
[13] |
T. Yildirim and S. Ciraci, Phys. Rev. Lett., 2005, 94: 175501
CrossRef
ADS
Google scholar
|
[14] |
T. Yildirim, J. Iniguez, and S. Ciraci, Phys. Rev. B, 2005, 72: 153403
CrossRef
ADS
Google scholar
|
[15] |
Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2005, 94: 155504
CrossRef
ADS
Google scholar
|
[16] |
Y. H. Kim, Y. F. Zhao, A. Williamson, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2006, 96: 016102
CrossRef
ADS
Google scholar
|
[17] |
Q. Sun, Q. Wang, P. Jena, and Y. Kawazoe, J. Am. Chem. Soc., 2005, 127: 14582
CrossRef
ADS
Google scholar
|
[18] |
S. Li and P. Jena, Phys. Rev. Lett., 2006, 97: 209601
CrossRef
ADS
Google scholar
|
[19] |
Q. Sun, P. Jena, Q. Wang, and M. Marquez, J. Am. Chem. Soc., 2006, 128: 9741
CrossRef
ADS
Google scholar
|
[20] |
S. Li and P. Jena, Phys. Rev. B, 2008, 77: 193101
CrossRef
ADS
Google scholar
|
[21] |
A. K. Geim and K. S. Novoselov, Nat. Mater., 2007, 6: 183
CrossRef
ADS
Google scholar
|
[22] |
J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, and S. Roth, Nature, 2007, 446: 60
CrossRef
ADS
Google scholar
|
[23] |
J. S. Arellano, L. M. Molina, A. Rubio, and J. A. Alonso, J. Chem. Phys., 2000, 112: 8114
CrossRef
ADS
Google scholar
|
[24] |
Y. Okamoto and Y. Miyamoto, J. Phys. Chem. B, 2001, 105: 3470
CrossRef
ADS
Google scholar
|
[25] |
N. Park, S. Hong, G. Kim, and S. H. Jhi, J. Am. Chem. Soc., 2007, 129: 8999
CrossRef
ADS
Google scholar
|
[26] |
Y. Gogotsi, R. K. Dash, G. Yushin, T. Yildirim, G. Laudisio, and J. E. Fischer, J. Am. Chem. Soc., 2005, 127: 16006
CrossRef
ADS
Google scholar
|
[27] |
G. Yushin, R. Dash, J. Jagiello, J. E. Fischer, and Y. Gogotsi, Adv. Funct. Mater., 2006, 16: 2288
CrossRef
ADS
Google scholar
|
[28] |
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865
CrossRef
ADS
Google scholar
|
[29] |
W. Kohn and L. J. Sham, Phys. Rev., 1965, 140: A1133
CrossRef
ADS
Google scholar
|
[30] |
Y. Y. Sun, K. Lee, L.Wang, Y.-H. Kim, W. Chen, Z. F. Chen, and S. B. Zhang, Phys. Rev. B, 2010, 82: 073401
CrossRef
ADS
Google scholar
|
[31] |
P. E. Blochl, Phys. Rev. B, 1994, 50: 17953
CrossRef
ADS
Google scholar
|
[32] |
http://invsee.asu.edu/nmodules/Carbonmod/crystalline.html
|
[33] |
Q. Wang, Q. Sun, P. Jena, and Y. Kawazoe, Phys. Rev. B, 2007, 75: 075312
CrossRef
ADS
Google scholar
|
[34] |
C.-G. Zhang, R. W. Zhang, Z.-X. Wang, Z. Zhou, S. B. Zhang, and Z. F. Chen, Chem. Eur. J., 2009, 15: 5910
CrossRef
ADS
Google scholar
|
[35] |
T. L. Makarova, B. Sundqvist, R. Hohne, P. Esquinazi, Y. Kopelevich, P. Scharff, V. A. Davydov, L. S. Kashevarova, and A. V. Rakhmanina, Nature, 2001, 413: 716
CrossRef
ADS
Google scholar
|
/
〈 |
|
〉 |