Metal-decorated defective BN nanosheets as hydrogen storage materials
Ming LI (李明), Ya-fei LI (李亚飞), Zhen ZHOU (周震), Pan-wen SHEN (申泮文)
Metal-decorated defective BN nanosheets as hydrogen storage materials
Density functional theory computations were performed to investigate hydrogen adsorption in metaldecorated defective BN nanosheets. The binding energies of Ca and Sc on pristine BN nanosheets are much lower than the corresponding cohesive energies of the bulk metals; however, B vacancies in BN nanosheets enhance the binding of Ca and Sc atoms dramatically and avoid the clustering of the metal atoms on the surface of BN nanosheets. Ca and Sc strongly bind to defective BN nanosheets due to charge transfer between metal atoms and BN nanosheets. Sc-decorated BN nanosheets with B vacancies demonstrate promising hydrogen adsorption performances with a hydrogen adsorption energy of -0.19∼ -0.35 eV/H2.
BN / nanosheets / hydrogen storage / first principles
[1] |
R.Coontz and B.Hanson, Science, 2004, 305: 957
CrossRef
ADS
Google scholar
|
[2] |
G. W.Crabtree, M. S.Dresselhaus, and M. V.Buchanan, Phys. Today, 2004, 57: 39
CrossRef
ADS
Google scholar
|
[3] |
L.Schlapbach and A.Zütel, Nature, 2001, 414: 353
CrossRef
ADS
Google scholar
|
[4] |
S.Satyapal, J.Petrovic, C.Read, G.Thomas, and G.Ordaz, Catal. Today, 2007, 120: 246
CrossRef
ADS
Google scholar
|
[5] |
J.Graetz, Chem. Soc. Rev., 2009, 38: 73
CrossRef
ADS
Google scholar
|
[6] |
R. C.Lochan and M.Head-Gordon, Phys. Chem. Chem. Phys., 2006, 8: 1357
CrossRef
ADS
Google scholar
|
[7] |
C.Liu, Y.Chen, C. Z.Wu, S. T.Xu, and H. M.Cheng, Carbon, 2010, 48: 452
CrossRef
ADS
Google scholar
|
[8] |
Z.Zhou, X. P.Gao, J.Yan, and D. Y.Song, Carbon, 2006, 44: 939
CrossRef
ADS
Google scholar
|
[9] |
S. A.Shevlin and Z. X.Guo, Chem. Soc. Rev., 2009, 38: 211
CrossRef
ADS
Google scholar
|
[10] |
Y. F.Zhao, Y. H.Kim, A. C.Dillon, M. J.Heben, and S. B.Zhang, Phys. Rev. Lett., 2005, 94: 155504
CrossRef
ADS
Google scholar
|
[11] |
T.Yildirim and S.Ciraci, Phys. Rev. Lett., 2005, 94: 175501
CrossRef
ADS
Google scholar
|
[12] |
A.Rubio, J. L.Corkill, and M. L.Cohen, Phys. Rev. B, 1994, 49: 5081
CrossRef
ADS
Google scholar
|
[13] |
N. G.Chopra, R. J.Luyken, K.Cherrey, V. H.Crespi, M. L.Cohen, S. G.Louie, and A.Zettl, Science, 1995, 269: 966
CrossRef
ADS
Google scholar
|
[14] |
Z.Zhou and Y.F.Li, J. Comput. Theor. Nanosci., 2009, 6: 327
CrossRef
ADS
Google scholar
|
[15] |
Z. Y.Yang, Y. F.Li, and Z.Zhou, Front. Phys. China, 2009, 4: 378
CrossRef
ADS
Google scholar
|
[16] |
Y. F.Li, Z.Zhou, D.Golberg, Y.Bando, P. v. R.Schleyer, and Z. F.Chen, J. Phys. Chem. C, 2008, 112: 1365
CrossRef
ADS
Google scholar
|
[17] |
Y. F.Li, Z.Zhou, and J. J.Zhao, Nanotechnology, 2008, 19: 015202
CrossRef
ADS
Google scholar
|
[18] |
Y. F.Li, Z.Zhou, and J. J.Zhao, J. Chem. Phys., 2007, 127: 184705
CrossRef
ADS
Google scholar
|
[19] |
Z.Zhou, J. J.Zhao, Z. F.Chen, X. P.Gao, T. Y.Yan, and P. v. R.Schleyer, J. Phys. Chem. B, 2006, 110: 13363
CrossRef
ADS
Google scholar
|
[20] |
T.Oku, T.Hirano, M.Kuno, T.Kusunose, K.Niihara, and K.Suganuma, Mater. Sci. Eng. B, 2000, 74: 206
CrossRef
ADS
Google scholar
|
[21] |
R. Z.Ma, Y.Bando, H. W.Zhu, T.Sato, C. L.Xu, and D. H.Wu, J. Am. Chem. Soc., 2002, 124: 7672
CrossRef
ADS
Google scholar
|
[22] |
C. C.Tang, Y.Bando, X. X.Ding, S. R.Qi, and D.Golberg, J. Am. Chem. Soc., 2002, 124: 14550
CrossRef
ADS
Google scholar
|
[23] |
T.Oku, M.Kuno, and I.Narita, J. Phys. Chem. Solids, 2004, 65: 549
CrossRef
ADS
Google scholar
|
[24] |
J. J.Zhao, A.Buidum, J.Han, and J. P.Lu, Nanotechnology, 2002, 13: 195
CrossRef
ADS
Google scholar
|
[25] |
W.Shi and J. K.Johnson, Phys. Rev. Lett., 2003, 91: 015504
CrossRef
ADS
Google scholar
|
[26] |
A.Cruz, V.Bertin, E.Poulain, J. I.Benitez, and S.Castillo, J. Chem. Phys., 2004, 120: 6222
CrossRef
ADS
Google scholar
|
[27] |
Y.Fukai, The Metal-Hydrogen System: Basic Bulk Properties, Berlin: Spinger-Verlag, 1993
|
[28] |
X. J.Wu, J. L.Yang, and X. C.Zeng, J. Chem. Phys., 2006, 125: 044704
CrossRef
ADS
Google scholar
|
[29] |
Q.Sun, Q.Wang, P.Jena, and Y.Kawazoe, J. Am. Chem. Soc., 2005, 127: 14582
CrossRef
ADS
Google scholar
|
[30] |
P. O.Krasnov, F.Ding, A. K.Singh, and B. I.Yakobson, J. Phys. Chem. C, 2007, 111: 17977
CrossRef
ADS
Google scholar
|
[31] |
D.Golberg, Y.Bando, Y.Huang, T.Terao, M.Mitome, C. C.Tang, and C. Y.Zhi, ACS Nano, 2010, 4: 2979
CrossRef
ADS
Google scholar
|
[32] |
L.Song, L. J.Ci, H.Lu, P. B.Sorokin, C. H.Jin, J.Ni, A. G.Kvashnin, D. G.Kvashnin, J.Lou, B. I.Yakobson, and P. M.Ajayan, Nano Lett., 2010, 10: 3209
CrossRef
ADS
Google scholar
|
[33] |
H. B.Zeng, C.Y.Zhi, Z. H.Zhang, X. L.Wei, X. B.Wang, W. L.Guo, Y.Bando, and D.Golberg, Nano Lett., 2010, 10: 5049
CrossRef
ADS
Google scholar
|
[34] |
C. H.Park and S. G.Louie, Nano Lett., 2008, 8: 2200
CrossRef
ADS
Google scholar
|
[35] |
X. F.Gao, Z.Zhou, Y. L.Zhao, S.Nagase, S. B.Zhang, and Z. F.Chen, J. Phys. Chem. C, 2008, 112: 12677
CrossRef
ADS
Google scholar
|
[36] |
W.Chen, Y. F.Li, G. T.Yu, Z.Zhou, and Z. F.Chen, J. Chem. Theory Comput., 2009, 5: 3088
CrossRef
ADS
Google scholar
|
[37] |
W.Chen, Y. F.Li, G. T.Yu, C. Z.Li, S. B.Zhang, Z.Zhou, and Z. F.Chen, J. Am. Chem. Soc., 2010, 132: 1699
CrossRef
ADS
Google scholar
|
[38] |
G.Kresse and J.Furthmüller, Phys. Rev. B, 1996, 54: 11169
CrossRef
ADS
Google scholar
|
[39] |
J. P.Perdew, J. A.Chevary, S. H.Vosko, K. A.Jackson, M. R.Pederson, D. J.Singh, and C.Fiolhais, Phys. Rev. B, 1992, 46: 6671
CrossRef
ADS
Google scholar
|
[40] |
D. M.Ceperley and B. J.Alder, Phys. Rev. Lett., 1980, 45: 566
CrossRef
ADS
Google scholar
|
[41] |
Y. H.Kim, Y. F.Zhao, A.Williamson, M. J.Heben, and S. B.Zhang, Phys. Rev. Lett., 2006, 96, 016102
CrossRef
ADS
Google scholar
|
[42] |
Y. F.Li, Z.Zhou, P. W.Shen, S. B.Zhang, and Z. F.Chen, Nanotechnology, 2009, 20: 215701
CrossRef
ADS
Google scholar
|
[43] |
C. G.Zhang, R. W.Zhang, Z. X.Wang, Z.Zhou, S. B.Zhang, and Z. F.Chen, Chem. Eur. J., 2009, 15: 5910
CrossRef
ADS
Google scholar
|
[44] |
D.Vanderbilt, Phys. Rev. B, 1990, 41: 7892
CrossRef
ADS
Google scholar
|
[45] |
G.Kim, S. H.Jhi, S.Lim, and N.Park, Appl. Phys. Lett., 2009, 94: 173102
CrossRef
ADS
Google scholar
|
[46] |
S.Azevedo, J. R.Kaschny, C. M. C.de Castilho, and F.de Brito Mota, Nanotechnology, 2007, 18: 495707
CrossRef
ADS
Google scholar
|
[47] |
C.Jin, F.Lin, K.Suenaga, and S.Iijima, Phys. Rev. Lett., 2009, 102: 195505
CrossRef
ADS
Google scholar
|
[48] |
X. J.Wu, J. L.Yang, J. G.Hou, and Q. S.Zhu, J. Chem. Phys., 2006, 124: 054706
CrossRef
ADS
Google scholar
|
[49] |
M.Yoon, S. Y.Yang, C.Hicke, E.Wang, D.Geohegan, and Z. Y.Zhang, Phys. Rev. Lett., 2008, 100: 206806
CrossRef
ADS
Google scholar
|
[50] |
M.Li, Y. F.Li, Z.Zhou, P. W.Shen, and Z. F.Chen, Nano Lett., 2009, 9: 1944
CrossRef
ADS
Google scholar
|
[51] |
Q.Wang, Q.Sun, P.Jena, and Y.Kawazoe, J. Chem. Theory Comput., 2009, 5: 374
CrossRef
ADS
Google scholar
|
[52] |
X. B.Yang, R. Q.Zhang, and J.Ni, Phys. Rev. B, 2009, 79: 075431
CrossRef
ADS
Google scholar
|
[53] |
H.Lee, J.Ihm, M. L.Cohen, and S. G.Louie, Phys. Rev. B, 2009, 80: 115412
CrossRef
ADS
Google scholar
|
[54] |
G. F.Wu, J. L.Wang, X. Y.Zhang, and L. Y.Zhu, J. Phys. Chem. C, 2009, 113: 7052
CrossRef
ADS
Google scholar
|
[55] |
G. J.Kubas, J. Organomet. Chem., 2001, 635: 37
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |