Metal-decorated defective BN nanosheets as hydrogen storage materials

Ming LI (李明), Ya-fei LI (李亚飞), Zhen ZHOU (周震), Pan-wen SHEN (申泮文)

PDF(422 KB)
PDF(422 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (2) : 224-230. DOI: 10.1007/s11467-011-0170-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Metal-decorated defective BN nanosheets as hydrogen storage materials

Author information +
History +

Abstract

Density functional theory computations were performed to investigate hydrogen adsorption in metaldecorated defective BN nanosheets. The binding energies of Ca and Sc on pristine BN nanosheets are much lower than the corresponding cohesive energies of the bulk metals; however, B vacancies in BN nanosheets enhance the binding of Ca and Sc atoms dramatically and avoid the clustering of the metal atoms on the surface of BN nanosheets. Ca and Sc strongly bind to defective BN nanosheets due to charge transfer between metal atoms and BN nanosheets. Sc-decorated BN nanosheets with B vacancies demonstrate promising hydrogen adsorption performances with a hydrogen adsorption energy of -0.19∼ -0.35 eV/H2.

Keywords

BN / nanosheets / hydrogen storage / first principles

Cite this article

Download citation ▾
Ming LI (李明), Ya-fei LI (李亚飞), Zhen ZHOU (周震), Pan-wen SHEN (申泮文). Metal-decorated defective BN nanosheets as hydrogen storage materials. Front. Phys., 2011, 6(2): 224‒230 https://doi.org/10.1007/s11467-011-0170-7

References

[1]
R.Coontz and B.Hanson, Science, 2004, 305: 957
CrossRef ADS Google scholar
[2]
G. W.Crabtree, M. S.Dresselhaus, and M. V.Buchanan, Phys. Today, 2004, 57: 39
CrossRef ADS Google scholar
[3]
L.Schlapbach and A.Zütel, Nature, 2001, 414: 353
CrossRef ADS Google scholar
[4]
S.Satyapal, J.Petrovic, C.Read, G.Thomas, and G.Ordaz, Catal. Today, 2007, 120: 246
CrossRef ADS Google scholar
[5]
J.Graetz, Chem. Soc. Rev., 2009, 38: 73
CrossRef ADS Google scholar
[6]
R. C.Lochan and M.Head-Gordon, Phys. Chem. Chem. Phys., 2006, 8: 1357
CrossRef ADS Google scholar
[7]
C.Liu, Y.Chen, C. Z.Wu, S. T.Xu, and H. M.Cheng, Carbon, 2010, 48: 452
CrossRef ADS Google scholar
[8]
Z.Zhou, X. P.Gao, J.Yan, and D. Y.Song, Carbon, 2006, 44: 939
CrossRef ADS Google scholar
[9]
S. A.Shevlin and Z. X.Guo, Chem. Soc. Rev., 2009, 38: 211
CrossRef ADS Google scholar
[10]
Y. F.Zhao, Y. H.Kim, A. C.Dillon, M. J.Heben, and S. B.Zhang, Phys. Rev. Lett., 2005, 94: 155504
CrossRef ADS Google scholar
[11]
T.Yildirim and S.Ciraci, Phys. Rev. Lett., 2005, 94: 175501
CrossRef ADS Google scholar
[12]
A.Rubio, J. L.Corkill, and M. L.Cohen, Phys. Rev. B, 1994, 49: 5081
CrossRef ADS Google scholar
[13]
N. G.Chopra, R. J.Luyken, K.Cherrey, V. H.Crespi, M. L.Cohen, S. G.Louie, and A.Zettl, Science, 1995, 269: 966
CrossRef ADS Google scholar
[14]
Z.Zhou and Y.F.Li, J. Comput. Theor. Nanosci., 2009, 6: 327
CrossRef ADS Google scholar
[15]
Z. Y.Yang, Y. F.Li, and Z.Zhou, Front. Phys. China, 2009, 4: 378
CrossRef ADS Google scholar
[16]
Y. F.Li, Z.Zhou, D.Golberg, Y.Bando, P. v. R.Schleyer, and Z. F.Chen, J. Phys. Chem. C, 2008, 112: 1365
CrossRef ADS Google scholar
[17]
Y. F.Li, Z.Zhou, and J. J.Zhao, Nanotechnology, 2008, 19: 015202
CrossRef ADS Google scholar
[18]
Y. F.Li, Z.Zhou, and J. J.Zhao, J. Chem. Phys., 2007, 127: 184705
CrossRef ADS Google scholar
[19]
Z.Zhou, J. J.Zhao, Z. F.Chen, X. P.Gao, T. Y.Yan, and P. v. R.Schleyer, J. Phys. Chem. B, 2006, 110: 13363
CrossRef ADS Google scholar
[20]
T.Oku, T.Hirano, M.Kuno, T.Kusunose, K.Niihara, and K.Suganuma, Mater. Sci. Eng. B, 2000, 74: 206
CrossRef ADS Google scholar
[21]
R. Z.Ma, Y.Bando, H. W.Zhu, T.Sato, C. L.Xu, and D. H.Wu, J. Am. Chem. Soc., 2002, 124: 7672
CrossRef ADS Google scholar
[22]
C. C.Tang, Y.Bando, X. X.Ding, S. R.Qi, and D.Golberg, J. Am. Chem. Soc., 2002, 124: 14550
CrossRef ADS Google scholar
[23]
T.Oku, M.Kuno, and I.Narita, J. Phys. Chem. Solids, 2004, 65: 549
CrossRef ADS Google scholar
[24]
J. J.Zhao, A.Buidum, J.Han, and J. P.Lu, Nanotechnology, 2002, 13: 195
CrossRef ADS Google scholar
[25]
W.Shi and J. K.Johnson, Phys. Rev. Lett., 2003, 91: 015504
CrossRef ADS Google scholar
[26]
A.Cruz, V.Bertin, E.Poulain, J. I.Benitez, and S.Castillo, J. Chem. Phys., 2004, 120: 6222
CrossRef ADS Google scholar
[27]
Y.Fukai, The Metal-Hydrogen System: Basic Bulk Properties, Berlin: Spinger-Verlag, 1993
[28]
X. J.Wu, J. L.Yang, and X. C.Zeng, J. Chem. Phys., 2006, 125: 044704
CrossRef ADS Google scholar
[29]
Q.Sun, Q.Wang, P.Jena, and Y.Kawazoe, J. Am. Chem. Soc., 2005, 127: 14582
CrossRef ADS Google scholar
[30]
P. O.Krasnov, F.Ding, A. K.Singh, and B. I.Yakobson, J. Phys. Chem. C, 2007, 111: 17977
CrossRef ADS Google scholar
[31]
D.Golberg, Y.Bando, Y.Huang, T.Terao, M.Mitome, C. C.Tang, and C. Y.Zhi, ACS Nano, 2010, 4: 2979
CrossRef ADS Google scholar
[32]
L.Song, L. J.Ci, H.Lu, P. B.Sorokin, C. H.Jin, J.Ni, A. G.Kvashnin, D. G.Kvashnin, J.Lou, B. I.Yakobson, and P. M.Ajayan, Nano Lett., 2010, 10: 3209
CrossRef ADS Google scholar
[33]
H. B.Zeng, C.Y.Zhi, Z. H.Zhang, X. L.Wei, X. B.Wang, W. L.Guo, Y.Bando, and D.Golberg, Nano Lett., 2010, 10: 5049
CrossRef ADS Google scholar
[34]
C. H.Park and S. G.Louie, Nano Lett., 2008, 8: 2200
CrossRef ADS Google scholar
[35]
X. F.Gao, Z.Zhou, Y. L.Zhao, S.Nagase, S. B.Zhang, and Z. F.Chen, J. Phys. Chem. C, 2008, 112: 12677
CrossRef ADS Google scholar
[36]
W.Chen, Y. F.Li, G. T.Yu, Z.Zhou, and Z. F.Chen, J. Chem. Theory Comput., 2009, 5: 3088
CrossRef ADS Google scholar
[37]
W.Chen, Y. F.Li, G. T.Yu, C. Z.Li, S. B.Zhang, Z.Zhou, and Z. F.Chen, J. Am. Chem. Soc., 2010, 132: 1699
CrossRef ADS Google scholar
[38]
G.Kresse and J.Furthmüller, Phys. Rev. B, 1996, 54: 11169
CrossRef ADS Google scholar
[39]
J. P.Perdew, J. A.Chevary, S. H.Vosko, K. A.Jackson, M. R.Pederson, D. J.Singh, and C.Fiolhais, Phys. Rev. B, 1992, 46: 6671
CrossRef ADS Google scholar
[40]
D. M.Ceperley and B. J.Alder, Phys. Rev. Lett., 1980, 45: 566
CrossRef ADS Google scholar
[41]
Y. H.Kim, Y. F.Zhao, A.Williamson, M. J.Heben, and S. B.Zhang, Phys. Rev. Lett., 2006, 96, 016102
CrossRef ADS Google scholar
[42]
Y. F.Li, Z.Zhou, P. W.Shen, S. B.Zhang, and Z. F.Chen, Nanotechnology, 2009, 20: 215701
CrossRef ADS Google scholar
[43]
C. G.Zhang, R. W.Zhang, Z. X.Wang, Z.Zhou, S. B.Zhang, and Z. F.Chen, Chem. Eur. J., 2009, 15: 5910
CrossRef ADS Google scholar
[44]
D.Vanderbilt, Phys. Rev. B, 1990, 41: 7892
CrossRef ADS Google scholar
[45]
G.Kim, S. H.Jhi, S.Lim, and N.Park, Appl. Phys. Lett., 2009, 94: 173102
CrossRef ADS Google scholar
[46]
S.Azevedo, J. R.Kaschny, C. M. C.de Castilho, and F.de Brito Mota, Nanotechnology, 2007, 18: 495707
CrossRef ADS Google scholar
[47]
C.Jin, F.Lin, K.Suenaga, and S.Iijima, Phys. Rev. Lett., 2009, 102: 195505
CrossRef ADS Google scholar
[48]
X. J.Wu, J. L.Yang, J. G.Hou, and Q. S.Zhu, J. Chem. Phys., 2006, 124: 054706
CrossRef ADS Google scholar
[49]
M.Yoon, S. Y.Yang, C.Hicke, E.Wang, D.Geohegan, and Z. Y.Zhang, Phys. Rev. Lett., 2008, 100: 206806
CrossRef ADS Google scholar
[50]
M.Li, Y. F.Li, Z.Zhou, P. W.Shen, and Z. F.Chen, Nano Lett., 2009, 9: 1944
CrossRef ADS Google scholar
[51]
Q.Wang, Q.Sun, P.Jena, and Y.Kawazoe, J. Chem. Theory Comput., 2009, 5: 374
CrossRef ADS Google scholar
[52]
X. B.Yang, R. Q.Zhang, and J.Ni, Phys. Rev. B, 2009, 79: 075431
CrossRef ADS Google scholar
[53]
H.Lee, J.Ihm, M. L.Cohen, and S. G.Louie, Phys. Rev. B, 2009, 80: 115412
CrossRef ADS Google scholar
[54]
G. F.Wu, J. L.Wang, X. Y.Zhang, and L. Y.Zhu, J. Phys. Chem. C, 2009, 113: 7052
CrossRef ADS Google scholar
[55]
G. J.Kubas, J. Organomet. Chem., 2001, 635: 37
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(422 KB)

Accesses

Citations

Detail

Sections
Recommended

/