First-principle investigation of the electronic and magnetic properties of PbMn (SO4)2

, ,

PDF(251 KB)
PDF(251 KB)
Front. Phys. ›› 2011, Vol. 6 ›› Issue (1) : 96-99. DOI: 10.1007/s11467-010-0154-z
RESEARCH ARTICLE
RESEARCH ARTICLE

First-principle investigation of the electronic and magnetic properties of PbMn (SO4)2

  • 1
  • 2
  • 3
Author information +
History +

Abstract

The magnetic properties of oxide PbMn(SO4)2 consisted of MnO6 octahedra which connected with each other through SO4 tetrahedra, are well studied in experiments. In this paper, we explored its interesting electronic and magnetic properties with first-principle calculations. Our results show that all Mn ions have high spin states, namely, S = 5/2, and the magnetic couplings between NN and NNN are antiferromagnetic, which agree well with the experimental results. Besides, the surprising results of spin exchange interactions between the NN and NNN are excellently explained with extended Hüuckel tight-binding calculations.

Keywords

first-principle calculations / magnetic properties / spin exchange

Cite this article

Download citation ▾
, , . First-principle investigation of the electronic and magnetic properties of PbMn (SO4)2. Front. Phys., 2011, 6(1): 96‒99 https://doi.org/10.1007/s11467-010-0154-z

References

[1]
D. V. West, I. D. Posen, Q. Huang, H. Zandbergen, T. Mcqueen, and R. Cave, J. Solid State Chem., 2009, 182: 2461
CrossRef ADS Google scholar
[2]
J. E. Greedan, J. Mater. Chem., 2001, 11: 37
CrossRef ADS Google scholar
[3]
D. Dai and M.-H. Whangbo, J. Chem. Phys., 2004, 121: 672
CrossRef ADS Google scholar
[4]
J. S. Smart, Effective Field Theory of Magnetism, Philadelphia: Saunders, 1966
[5]
M.-H. Whangbo, H. Koo, and D. Dai, J. Solid State Chem., 2003, 176: 417
CrossRef ADS Google scholar
[6]
M.-H. Whangbo, D. Dai, and H. Koo, Solid State Sci., 2005, 7: 827
[7]
H. Koo, M.-H. Whangbo, P. VerNooy, C. Torardi, and W. Marshall, Inorg. Chem., 2002, 41: 4664
CrossRef ADS Google scholar
[8]
H. Koo and M.-H. Whangbo, Inorg. Chem., 2008, 47: 128
CrossRef ADS Google scholar
[9]
H. Koo and M.-H. Whangbo, Inorg. Chem., 2008, 47: 4779
CrossRef ADS Google scholar
[10]
J. Kang, C. Lee, R. Kremer, and M.-H. Whangbo, J. Phys.: Condens. Matter, 2009, 21: 392201
CrossRef ADS Google scholar
[11]
F. Wu, E. Kan, and M.-H. Whangbo, Inorg. Chem., 2010, 49: 3025
CrossRef ADS Google scholar
[12]
F. Wu, E. Kan, and M.-H. Whangbo, Inorg. Chem., 2010, 49: 7545
CrossRef ADS Google scholar
[13]
G. Kresse and J. Hafner, Phys. Rev. B, 1993, 62: 558
CrossRef ADS Google scholar
[14]
G. Kresse and J. Furthmüller, Comput. Mater. Sci., 1996, 6: 15
CrossRef ADS Google scholar
[15]
G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54: 11169
CrossRef ADS Google scholar
[16]
J. P. Perdew, S. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865
CrossRef ADS Google scholar
[17]
S. L. Dudarev, G. A. Botton, S. Savrasov, C. Humphreys, and A. Sutton, Phys. Rev. B, 1998, 57 : 1505
CrossRef ADS Google scholar
[18]
E. Kan, L. F. Yuan, and J. L. Yang, J. Appl. Phys., 2007, 102: 033915
CrossRef ADS Google scholar
[19]
S. Ji, E. Kan, M.-H. Whangbo, J.-H. Kim, Y. Qiu, M. Matsuda, H. Yoshida, Z. Hiroi, M. A. Green, T. Ziman, and S.-H. Lee, Phys. Rev. B, 2010, 81: 094421
CrossRef ADS Google scholar
[20]
D. Dai and M. -H. Whangbo, J. Chem. Phys., 2001, 114: 2887
CrossRef ADS Google scholar
[21]
D. Dai and M. -H. Whangbo, J. Chem. Phys., 2003, 118: 29
CrossRef ADS Google scholar
[22]
J. B. Goodenough, Magnetism and the Chemical Bond, New York: Wiley Interscience, 1963

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(251 KB)

Accesses

Citations

Detail

Sections
Recommended

/