A first-principles study on the electronic structure of one-dimensional [TM(Bz)] polymer (TM= Y, Zr, Nb, Mo, and Tc)

, Richard TJORNHAMMAR, ,

PDF(824 KB)
PDF(824 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (3) : 403-407. DOI: 10.1007/s11467-009-0054-2
RESEARCH ARTICLE
RESEARCH ARTICLE

A first-principles study on the electronic structure of one-dimensional [TM(Bz)] polymer (TM= Y, Zr, Nb, Mo, and Tc)

Author information +
History +

Abstract

A systematic density functional theory (DFT) study has been performed to investigate the electronic and magnetic properties of one-dimensional sandwich polymers constructed with benzene (Bz) and the second-row transition metal (TM= Y, Zr, Nb, Mo, and Tc). Within the framework of generalized gradient approximation (GGA), [Tc(Bz)] is a ferromagnetic half-metal, and [Nb(Bz)] is a ferromagnetic metal. With the on-site Coulomb interaction for 4d TM atoms being taken into account, [Tc(Bz)] keeps a robust half-metallic behavior, while [Nb(Bz)] becomes a spin-selective semiconductor. The stability of the half-metallic [Tc(Bz)] polymer is discussed based on magnetic anisotropy energy (MAE). Compared with 0.1 meV per metal atom in [Mn(Bz)], the calculated MAE for [Tc(Bz)] is 2.3 meV per metal atom. Such a significantly larger MAE suggests that Tc(Bz)] is practically more promising than its first-row TM equivalent.

Keywords

first-principles / half metal / magnetic anisotropy energy / TM(Bz)

Cite this article

Download citation ▾
, Richard TJORNHAMMAR, , . A first-principles study on the electronic structure of one-dimensional [TM(Bz)] polymer (TM= Y, Zr, Nb, Mo, and Tc). Front. Phys., 2009, 4(3): 403‒407 https://doi.org/10.1007/s11467-009-0054-2

References

[1]
S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science, 2001, 294: 1488
CrossRef ADS Google scholar
[2]
I. Zutic, J. Fabian, and S. Das Sarma, Rev. Mod. Phys., 2004, 76: 323
CrossRef ADS Google scholar
[3]
R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett., 1983, 50: 2024
CrossRef ADS Google scholar
[4]
E. J. Kan, H. J. Xiang, J. L. Yang, and J. G. Hou, J. Chem. Phys., 2007, 127: 164706
CrossRef ADS Google scholar
[5]
E. J. Kan, Z. Li, J. Yang, and J. G. Hou, Appl. Phys. Lett., 2007, 91: 243116
CrossRef ADS Google scholar
[6]
C. K. Yang, J. Zhao, and J. P. Lu, Nano Lett., 2004, 4: 561
CrossRef ADS Google scholar
[7]
C. K. Yang, J. Zhao, and J. P. Lu, Phys. Rev. Lett., 2003, 90: 257203
CrossRef ADS Google scholar
[8]
H. J. Xiang, J. L. Yang, J. G. Hou, and Q. S. Zhu, J. Am. Chem. Soc., 2006, 128: 2310
CrossRef ADS Google scholar
[9]
L. Shen, S. W. Yang, M. F. Ng, V. Ligatchev, L. P. Zhou, and Y. P. Feng, J. Am. Chem., 2008, 130: 13956
CrossRef ADS Google scholar
[10]
L.Wang, Z. X. Cai, J. Y.Wang, J. Lu, G. F. Luo, L. Lai, J. Zhou, R. Qin, Z. X. Gao, D. P. Yu, G. P. Li,W. N. Mei, and S. Sanvito, Nano Lett., 2008, 8: 3640
CrossRef ADS Google scholar
[11]
L. Pisani, B. Montanari, and N. M. Harrison, New J. Phys., 2008, 10: 033002
CrossRef ADS Google scholar
[12]
K. Miyajima, A. Nakajima, S. Yabushita, M. B. Knickelbein, and K. Kaya, J. Am. Chem. Soc., 2004, 126: 13202
CrossRef ADS Google scholar
[13]
J. Wang, H. P. Acioli, and J. Jellinek, J. Am. Chem. Soc., 2005, 127: 2812
CrossRef ADS Google scholar
[14]
Y. Mokrousov, N. Atodiresei, G. Bihlmayer, S. Heinze, and S. Blugel, Nanotechnology, 2007, 18: 495402
CrossRef ADS Google scholar
[15]
J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77: 3865
CrossRef ADS Google scholar
[16]
A. I. Liechtenstein, V. I. Anisimov, and J. Zaane, Phys. Rev. B, 1995, 52: R5467
CrossRef ADS Google scholar
[17]
G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54: 11169
CrossRef ADS Google scholar
[18]
G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47: R558
CrossRef ADS Google scholar
[19]
G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49: 14251
CrossRef ADS Google scholar
[20]
J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45: 13244
CrossRef ADS Google scholar
[21]
S. L. Dudarev, G. A. Botton, S. Y. Savrasov, C. J. Humphreys, and A. P. Sutton, Phys. Rev. B, 1998, 57: 1505
CrossRef ADS Google scholar
[22]
P. E. Blchl, Phys. Rev. B, 1994, 50: 17953
CrossRef ADS Google scholar
[23]
G. Kresse and D. Joubert, Phys. Rev. B, 1996, 59: 1758
CrossRef ADS Google scholar
[24]
J. D. Pack and H. J. Monkhorst, Phys. Rev. B, 1976, 13: 5188
CrossRef ADS Google scholar
[25]
V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J. Phys.: Condens. Matter, 1997, 9: 767
CrossRef ADS Google scholar
[26]
Z. Li, J. Yang, J. G. Hou, and Q. Zhu, Phys. Rev. B, 2005, 71: 24502
CrossRef ADS Google scholar
[27]
S. K. Pandey and K. Maiti, Phys. Rev. B, 2008, 78: 045120
CrossRef ADS Google scholar
[28]
E. J. Kan, L. F. Yuan, J. L. Yang, and J. G. Hou, Phys. Rev. B, 2008, 76: 024417
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(824 KB)

Accesses

Citations

Detail

Sections
Recommended

/