Experimental progress in gravity measurement with an atom interferometer
Min-kang ZHOU (周敏康), Zhong-kun HU (胡忠坤), Xiao-chun DUAN (段小春), Bu-liang SUN (孙布梁), Jin-bo ZHAO (赵锦波), Jun LUO (罗俊)
Experimental progress in gravity measurement with an atom interferometer
Precisely determining gravity acceleration g plays an important role on both geophysics and metrology. For gravity measurements and high-precision gravitation experiments, a cold atom gravimeter with the aimed resolution of 10-9g/Hz1/2 (1 g=9.8 m/s2) is being built in our cave laboratory. There will be four steps for our 87Rb atom gravimeter, Magneto–Optical Trap (MOT) for cooling and trapping atoms, initial state preparation, π/2-π-π/2 Raman laser pulse interactions with cold atoms, and the final state detection for phase measurement. About 108 atoms have been trapped by our MOT and further cooled by moving molasses, and an atomic fountain has also been observed.
gravity measurement / atom interferometry
[1] |
J. E. Fall, Metrologia, 2002, 39: 425
CrossRef
ADS
Google scholar
|
[2] |
A. Peters, K. Y. Chung, and S. Chu, Metrologia, 2001, 38: 25
CrossRef
ADS
Google scholar
|
[3] |
T. M. Niebauer, G. S. Sasagawa, J. E. Faller, R. Hilt, and F. Klopping, Metrologia, 1995, 32: 159
CrossRef
ADS
Google scholar
|
[4] |
M. Kasevich and S. Chu, Appl. Phys. B, 1992, 54: 321
CrossRef
ADS
Google scholar
|
[5] |
A. Peters, K .Y. Chung, and S. Chu, Nature, 1999, 400: 849
CrossRef
ADS
Google scholar
|
[6] |
J. LeGouet, T. E. Mehlst�ubler, S. kim, S. Merlet, A. Clairon, Landragin A., and F. P. Dossantos, Appl. Phys. B, 2008, 92: 133
|
[7] |
G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Preredelli, and G. M. Tino, Phys. Rev. Lett., 2008, 100: 050801
CrossRef
ADS
Google scholar
|
[8] |
J. B. Fixler, G. T. Foster, J. M. McGuivk, and M. A. Kasevich, Science, 2007, 315: 74
CrossRef
ADS
Google scholar
|
[9] |
S. Dimopoulos, W. Graham Peter, J. Hogan, and M. Kasevich, Phys. Rev. Lett., 2007, 98: 111102
CrossRef
ADS
Google scholar
|
[10] |
N. Yu, J. M. Kohel, J. R. Kellogg, and L. Maleki, Appl. Phys. B, 2006, 84: 647
CrossRef
ADS
Google scholar
|
[11] |
G. M. Tino, Nucl. Phys. B, 2002, 113: 289
CrossRef
ADS
Google scholar
|
[12] |
O. Carnal and J. Mlynek, Phys. Rev. Lett., 1991, 66: 2689
CrossRef
ADS
Google scholar
|
[13] |
D. W. Kith, C. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard, Phys. Rev. Lett., 1991, 66: 2693
CrossRef
ADS
Google scholar
|
[14] |
F. Riehle, Th. Kisters, A. Witte, and Ch. Borde, Phys. Rev. Lett., 1991, 67: 177
CrossRef
ADS
Google scholar
|
[15] |
M. Kasevich and S. Chu, Phys. Rev. Lett., 1991, 67: 181
CrossRef
ADS
Google scholar
|
[16] |
K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, Phys. Rev. A, 1992, 45: 342
CrossRef
ADS
Google scholar
|
[17] |
E. L. Roab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett., 1987, 59: 2631
CrossRef
ADS
Google scholar
|
[18] |
C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett., 1990, 65: 1571
CrossRef
ADS
Google scholar
|
[19] |
H. J. Metcalf and S. P. Vander, J. Opt. Soc. Am. B, 2003, 20: 887
CrossRef
ADS
Google scholar
|
[20] |
J. H. Shirley, Opt. Lett., 1982, 7: 537
CrossRef
ADS
Google scholar
|
[21] |
J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett., 1981, 39: 680
CrossRef
ADS
Google scholar
|
[22] |
T. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowsk, and W. Grawlik, J. Opt. B: Quantum Semiclass. Opt., 2002, 4: 62
CrossRef
ADS
Google scholar
|
/
〈 | 〉 |