Experimental progress in gravity measurement with an atom interferometer

Min-kang ZHOU (周敏康), Zhong-kun HU (胡忠坤), Xiao-chun DUAN (段小春), Bu-liang SUN (孙布梁), Jin-bo ZHAO (赵锦波), Jun LUO (罗俊)

PDF(600 KB)
PDF(600 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (2) : 170-173. DOI: 10.1007/s11467-009-0036-4
REVIEW ARTICLE
REVIEW ARTICLE

Experimental progress in gravity measurement with an atom interferometer

Author information +
History +

Abstract

Precisely determining gravity acceleration g plays an important role on both geophysics and metrology. For gravity measurements and high-precision gravitation experiments, a cold atom gravimeter with the aimed resolution of 10-9g/Hz1/2 (1 g=9.8 m/s2) is being built in our cave laboratory. There will be four steps for our 87Rb atom gravimeter, Magneto–Optical Trap (MOT) for cooling and trapping atoms, initial state preparation, π/2-π-π/2 Raman laser pulse interactions with cold atoms, and the final state detection for phase measurement. About 108 atoms have been trapped by our MOT and further cooled by moving molasses, and an atomic fountain has also been observed.

Keywords

gravity measurement / atom interferometry

Cite this article

Download citation ▾
Min-kang ZHOU (周敏康), Zhong-kun HU (胡忠坤), Xiao-chun DUAN (段小春), Bu-liang SUN (孙布梁), Jin-bo ZHAO (赵锦波), Jun LUO (罗俊). Experimental progress in gravity measurement with an atom interferometer. Front. Phys., 2009, 4(2): 170‒173 https://doi.org/10.1007/s11467-009-0036-4

References

[1]
J. E. Fall, Metrologia, 2002, 39: 425
CrossRef ADS Google scholar
[2]
A. Peters, K. Y. Chung, and S. Chu, Metrologia, 2001, 38: 25
CrossRef ADS Google scholar
[3]
T. M. Niebauer, G. S. Sasagawa, J. E. Faller, R. Hilt, and F. Klopping, Metrologia, 1995, 32: 159
CrossRef ADS Google scholar
[4]
M. Kasevich and S. Chu, Appl. Phys. B, 1992, 54: 321
CrossRef ADS Google scholar
[5]
A. Peters, K .Y. Chung, and S. Chu, Nature, 1999, 400: 849
CrossRef ADS Google scholar
[6]
J. LeGouet, T. E. Mehlst�ubler, S. kim, S. Merlet, A. Clairon, Landragin A., and F. P. Dossantos, Appl. Phys. B, 2008, 92: 133
[7]
G. Lamporesi, A. Bertoldi, L. Cacciapuoti, M. Preredelli, and G. M. Tino, Phys. Rev. Lett., 2008, 100: 050801
CrossRef ADS Google scholar
[8]
J. B. Fixler, G. T. Foster, J. M. McGuivk, and M. A. Kasevich, Science, 2007, 315: 74
CrossRef ADS Google scholar
[9]
S. Dimopoulos, W. Graham Peter, J. Hogan, and M. Kasevich, Phys. Rev. Lett., 2007, 98: 111102
CrossRef ADS Google scholar
[10]
N. Yu, J. M. Kohel, J. R. Kellogg, and L. Maleki, Appl. Phys. B, 2006, 84: 647
CrossRef ADS Google scholar
[11]
G. M. Tino, Nucl. Phys. B, 2002, 113: 289
CrossRef ADS Google scholar
[12]
O. Carnal and J. Mlynek, Phys. Rev. Lett., 1991, 66: 2689
CrossRef ADS Google scholar
[13]
D. W. Kith, C. R. Ekstrom, Q. A. Turchette, and D. E. Pritchard, Phys. Rev. Lett., 1991, 66: 2693
CrossRef ADS Google scholar
[14]
F. Riehle, Th. Kisters, A. Witte, and Ch. Borde, Phys. Rev. Lett., 1991, 67: 177
CrossRef ADS Google scholar
[15]
M. Kasevich and S. Chu, Phys. Rev. Lett., 1991, 67: 181
CrossRef ADS Google scholar
[16]
K. Moler, D. S. Weiss, M. Kasevich, and S. Chu, Phys. Rev. A, 1992, 45: 342
CrossRef ADS Google scholar
[17]
E. L. Roab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Phys. Rev. Lett., 1987, 59: 2631
CrossRef ADS Google scholar
[18]
C. Monroe, W. Swann, H. Robinson, and C. Wieman, Phys. Rev. Lett., 1990, 65: 1571
CrossRef ADS Google scholar
[19]
H. J. Metcalf and S. P. Vander, J. Opt. Soc. Am. B, 2003, 20: 887
CrossRef ADS Google scholar
[20]
J. H. Shirley, Opt. Lett., 1982, 7: 537
CrossRef ADS Google scholar
[21]
J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett., 1981, 39: 680
CrossRef ADS Google scholar
[22]
T. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowsk, and W. Grawlik, J. Opt. B: Quantum Semiclass. Opt., 2002, 4: 62
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(600 KB)

Accesses

Citations

Detail

Sections
Recommended

/