Simulation of electronic structure of nanomaterials by central insertion scheme

, ,

Front. Phys. ›› 0

PDF(714 KB)
PDF(714 KB)
Front. Phys. ›› DOI: 10.1007/s11467-009-0025-7
REVIEW ARTICLE
REVIEW ARTICLE

Simulation of electronic structure of nanomaterials by central insertion scheme

  • 1,2
  • 1
  • 1
Author information +
History +

Abstract

An effective central insertion scheme (CIS) that allows to study the electronic structure of nanomaterials at the first principles level is introduced. Taking advantage of advanced numerical methods, such as the implicitly restarted Arnoldi method (IRAM) and spectral transformation, together with efficient parallelization technique, this scheme can provide accurate electronic structures and properties of one-,two-, and three-dimensional nanomaterials with only a fraction of computational time required for conventional quantum chemical calculations. Electronic structures of several nanostructures, such as single-walled carbon nanotubes of sub-100 nm in length, silicon nanoclusters of sub-6.5 nm in diameter and metal doped silicon clusters, calculated at hybrid density functional level are presented.

Keywords

nanomaterial / electronic structure / density functional theory / largescale calculations

Cite this article

Download citation ▾
, , . Simulation of electronic structure of nanomaterials by central insertion scheme. Front. Phys., https://doi.org/10.1007/s11467-009-0025-7

References

[1]
W. T. Yang, Phys. Rev. Lett., 1991, 66: 1438
CrossRef ADS Google scholar
[2]
W. T. Yang and T. S. Lee, J. Chem. Phys., 1995, 103: 5674
CrossRef ADS Google scholar
[3]
J. Jiang, K. Liu, W. Lu, Y. Luo, J. Chem. Phys., 2006, 124: 214711
CrossRef ADS Google scholar
[4]
C. Yang, Ph D. Thesis, Rice University, 1998, available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1. 49.8963
[5]
D. C. Sorensen, SIAM J. Matrix Analysis and Applications, 1992, 13: 357
CrossRef ADS Google scholar
[6]
R. B. Lehoucq,D. C. Sorensen, and C. Yang, ARPACK Users’ Guide: Solution of Large Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, 1997, available athttp://www.caam.rice.edu/software/ARPACK/
[7]
T. Sakurai, H. Tadano, Y. Inadomi, and U. Nagashima, Appl. Num. Anal. Comp. Math., 2004, 1: 516
CrossRef ADS Google scholar
[8]
B. Gao, J. Jiang, K. Liu, Z. Y. Wu, W. Lu, and Y. Luo, J. Comput. Chem., 2008, 29: 434
CrossRef ADS Google scholar
[9]
BioNano-LEGO V1.0 is a tool package for central insertion scheme approach written by B. Gao, J. Jiang, K. Liu, and Y. Luo, Royal Institute of Technology, Sweden, 2007
[10]
B. Gao, J. Jiang, Z. Y. Wu, and Y. Luo, J. Chem. Phys., 2008, 128: 084707
CrossRef ADS Google scholar
[11]
Y. Saad, Numerical Methods for Large Eigenvalue Problems, 1st edition, New York: Halsted Press, 1992
[12]
S. Iijima, Nature, 1991, 354: 56
CrossRef ADS Google scholar
[13]
R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes, London: Imperial College Press, 1998
[14]
L. Yang, M. P. Anantram, J. Han, and J. P. Lu, Phys. Rev. B, 1999, 60: 13874
CrossRef ADS Google scholar
[15]
C. D. Spataru, S. Ismail-Beigi, L. X. Benedict, and S. G. Louie, Phys. Rev. Lett., 2004, 92: 077402
CrossRef ADS Google scholar
[16]
Y. Akai and S. Saito, Physica E, 2005, 29: 555
CrossRef ADS Google scholar
[17]
V. Barone, J. E. Peralta, M. Wert, J. Heyd, and G. E. Scuseria, Nano Lett., 2005, 5: 1621
CrossRef ADS Google scholar
[18]
V. Barone, J. E. Peralta, and G. E. Scuseria, Nano Lett., 2005, 5: 1830
CrossRef ADS Google scholar
[19]
T. Miyake and S. Saito, Phys. Rev. B, 2005, 72: 073404
CrossRef ADS Google scholar
[20]
M. J. O’Connell, S. M. Bachilo, C. B. Huffman, V. C. Moore, M. S. Strano, E. H. Haroz, K. L. Rialon, P. J. Boul, W. H. Noon, C. Kittrell, J. P. Ma, R. H. Hauge, R. B. Weisman, and R. E. Smalley, Science, 2002, 297: 593
CrossRef ADS Google scholar
[21]
A. Javey, P. Qi, Q. Wang, and H. Dai, Proc. Natl. Acad. Sci. U.S.A., 2004, 101: 13408
CrossRef ADS Google scholar
[22]
A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, and H. Dai, Phys. Rev. Lett., 2004, 92: 106804
CrossRef ADS Google scholar
[23]
R. V. Seidel, A. P. Graham, J. Kretz, B. Rajasekharan, G. S. Duesberg, M. Liebau, E. Unger, F. Kreupl, and W. Hoenlein, Nano Lett., 2005, 5: 147
CrossRef ADS Google scholar
[24]
Y. M. Lin, J. Appenzeller, Z. H. Chen, Z. G. Chen, H. M. Cheng, and P. Avouris, IEEE Electron Device Lett., 2005, 26: 823
[25]
S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, and R. B. Weisman, Science, 2002, 298: 2361
[26]
G. Dukovic, F. Wang, D. H. Song, M. Y. Sfeir, T. F. Heinz, and L. E. Brus, Nano Lett., 2005, 5: 2314
CrossRef ADS Google scholar
[27]
F. Wang, G. Dukovic, L. E. Brus, and T. F. Heinz, Science, 2005, 308: 838
CrossRef ADS Google scholar
[28]
V. N. Popov, New J. Phys., 2004, 6: 1
CrossRef ADS Google scholar
[29]
V. N. Popov and L. Henrard, Phys. Rev. B, 2004, 70: 115407
CrossRef ADS Google scholar
[30]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, ., Gaussian 03, Revision D. 01, Gaussian, Inc., Wallingford CT, 2004
[31]
R. B. Weisman and S. M. Bachilo, Nano Lett., 2003, 3: 1235
CrossRef ADS Google scholar
[32]
A. D. Zedtsis, Rev. Adv. Mater. Sci., 2006, 11: 56
[33]
G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg, and R. S. Williams, Science, 1998, 279: 353
CrossRef ADS Google scholar
[34]
J. P. Wilcoxon, P. P. Provencio, and G. A. Samara, Phys. Rev. B, 2001, 64: 035417
CrossRef ADS Google scholar
[35]
M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, Phys. Rev. Lett., 1999, 82: 197
CrossRef ADS Google scholar
[36]
K. Kim, Phys. Rev. B, 1998, 57: 13072
CrossRef ADS Google scholar
[37]
Y. Kanemitsou, Phys. Rev. B, 1994, 49: 16845
CrossRef ADS Google scholar
[38]
S. Ogut, J. Chelikowsky, and S. G. Louie, Phys. Rev. Lett., 1997, 79: 1770
CrossRef ADS Google scholar
[39]
S. Ogut, J. Chelikowsky, and S. G. Louie, Phys. Rev. Lett., 1998, 80: 3162
CrossRef ADS Google scholar
[40]
F. A. Reboredo, A. Franceschetti, and A. Zunger, Phys. Rev. B, 2000, 61: 13073
CrossRef ADS Google scholar
[41]
I. Vasiiev, S. Ogut, and J. Cheliskowsky, Phys. Rev. Lett., 2001, 86: 1813
CrossRef ADS Google scholar
[42]
G. Nesher, L. Kronik, and J. R. Chelikowsky, Phys. Rev. B, 2005, 71: 035344
CrossRef ADS Google scholar
[43]
A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, J. Chem. Phys., 2002, 117: 6721
CrossRef ADS Google scholar
[44]
J. Nayak, R. Mythili, M. Vijayalakshmi, and S. N. Sahu, Physica E, 2004, 24: 227
CrossRef ADS Google scholar
[45]
M. A. Malik, P. O’Brien, S. Noragera, and J. Smith, J. Mater. Chem., 2003, 13: 2591
CrossRef ADS Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(714 KB)

Accesses

Citations

Detail

Sections
Recommended

/