A precision analysis and determination of the technical requirements of an atom interferometer for gravity measurement

Zhao-ying WANG (王兆英), Tao CHEN (陈涛), Xiao-long WANG (王肖隆), Zhang ZHANG (张璋), Yun-fei XU (徐云飞), Qiang LIN (林强)

PDF(395 KB)
PDF(395 KB)
Front. Phys. ›› 2009, Vol. 4 ›› Issue (2) : 174-178. DOI: 10.1007/s11467-009-0017-7
RESEARCH ARTICLE
RESEARCH ARTICLE

A precision analysis and determination of the technical requirements of an atom interferometer for gravity measurement

Author information +
History +

Abstract

The influence of the wave-front curvature of Raman pulses on the measurement precision of gravitational acceleration in atom interferometry is analysed by the method of a transmission matrix. It is shown that the measurement precision of gravitational acceleration is largely dependent on the spot size of the Raman pulse, the temporal interval between Raman pulses and the optical path difference of the two counter-propagating Raman pulses. Moreover, the influence of Doppler frequency shift on the precision is discussed. In order to get a certain measurement precision, the requirement for the accuracy of frequency scanning of the Raman pulse to compensate for the Doppler frequency shift is obtained.

Keywords

atom interferometry / measurement precision / gravitational acceleration / wave-front curvature / Doppler shift

Cite this article

Download citation ▾
Zhao-ying WANG (王兆英), Tao CHEN (陈涛), Xiao-long WANG (王肖隆), Zhang ZHANG (张璋), Yun-fei XU (徐云飞), Qiang LIN (林强). A precision analysis and determination of the technical requirements of an atom interferometer for gravity measurement. Front. Phys., 2009, 4(2): 174‒178 https://doi.org/10.1007/s11467-009-0017-7

References

[1]
M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. S. Durfee, D. M. Kurn, and W. Ketterle, Nature, 1997, 275(5300): 637
[2]
B. P. Anderson and M. A. Kasevich, Science, 1998, 282(5394): 1686
CrossRef ADS Google scholar
[3]
F. S. Cataliotti, S. Burger, C. Fort, P. Maddaloni, F. Minardi, A. Trombettoni, A. Smerzi, and M. Inguscio, Science, 2001, 293(5531): 843
CrossRef ADS Google scholar
[4]
W. M. Liu, W. B. Fan, W. M. Zheng, J. Q. Liang, and S. T. Chui, Phys. Rev. Lett., 2002, 88: 170408-1
CrossRef ADS Google scholar
[5]
A. C. Ji, Q. Sun, X. C. Xie, and W. M. Liu, Phys. Rev. Lett., 2009, 102: 023602-1
CrossRef ADS Google scholar
[6]
K.W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett., 2000, 84(5): 806
CrossRef ADS Google scholar
[7]
K.W., MadisonF. Chevy, V. Bretin, and J. Dalibard, Phys. Rev. Lett., 2001, 86(20): 4443
[8]
J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Science, 2001, 292(5516): 476
CrossRef ADS Google scholar
[9]
A. C. Ji, W. M. Liu, J. L. Song, and F. Zhou, Phys. Rev. Lett., 2008, 101: 010402-1
CrossRef ADS Google scholar
[10]
M. Kasevich and S. Chu, Appl. Phys. B, 1992, 54(5): 321
CrossRef ADS Google scholar
[11]
S. D. Weiss, C. B. Young, and S. Chu, Appl. Phys. B, 1994, 59(3): 217
CrossRef ADS Google scholar
[12]
A. Peters, K. Y. Chung, and S. Chu, Metrologia, 2001, 38(1): 25
CrossRef ADS Google scholar
[13]
J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, Phys. Rev. A, 2002, 65(3): 033608
CrossRef ADS Google scholar
[14]
N. Yu, J. M. Kohel, J. R. Kellogg, and L. Maleki, Appl. Phys. B, 2006, 84(4): 647
CrossRef ADS Google scholar
[15]
Fuli Li, Advanced Laser Physics, Beijing: Higher Education Press, 2006
[16]
M. Kasevich and S. Chu, Phys. Rev. Lett., 1991, 67(2): 181
CrossRef ADS Google scholar
[17]
Yiqiu Wang, Laser Cooling and Trapping Atoms, Beijing: Peking University Press, 2007: 394

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(395 KB)

Accesses

Citations

Detail

Sections
Recommended

/