
Entropy production in a cell and reversal of entropy flow as an anticancer therapy
Liao-fu LUO(罗辽复)
Front. Phys. ›› 0
Entropy production in a cell and reversal of entropy flow as an anticancer therapy
The entropy production rate of cancer cells is always higher than healthy cells in the case where no external field is applied. Different entropy production between two kinds of cells determines the direction of entropy flow among cells. The entropy flow is the carrier of information flow. The entropy flow from cancerous cells to healthy cells takes along the harmful information of cancerous cells, propagating its toxic action to healthy tissues. We demonstrate that a low-frequency and lowintensity electromagnetic field or ultrasound irradiation may increase the entropy production rate of a cell in normal tissue than that in cancer and consequently reverse the direction of entropy current between two kinds of cells. The modification of the PH value of cells may also cause the reversal of the direction of entropy flow between healthy and cancerous cells. Therefore, the biological tissue under the irradiation of an electromagnetic field or ultrasound or under the appropriate change of cell acidity can avoid the propagation of harmful information from cancer cells. We suggest that this entropy mechanism possibly provides a basis for a novel approach to anticancer therapy.
entropy production / information flow / cell / ultrasound / electromagnetic field / anticancer therapy
[1] |
E. Schrödinger, What is Life? Physical Aspects of Living Cell, Cambridge: Cambridge University Press, 1948
|
[2] |
L. F. Luo, Theoretic-Physical Approach to Molecular Biology, Shanghai: Shanghai Scientific and Technical Publisher, 2004
|
[3] |
L. F. Luo, Journal of Hefei University (Natural Sciences), 2006, 16: 1
|
[4] |
L. F. Luo, J. Molnar, H. Ding, X. G. Lv, and Spengler G., Diagnostic Pathology, 2006, 1: 43
CrossRef
ADS
Google scholar
|
[5] |
L. F. Luo, J. Molnar, H. Ding, X. G. Lv, and G. Spengler, Diagnostic Pathology, 2006, 1:35
CrossRef
ADS
Google scholar
|
[6] |
P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, New York: Wiley Interscience, 1978
|
[7] |
B. G. Nicolis and I. Prigogine, Self-organization in Nonequilibrium Systems, New York: Wiley Interscience, 1977
|
[8] |
J. Molnar, B. S. Thornton, A.Molnar, D. Gaal, L. Luo, and E. Bergmann-Leitner, Letters in Drug Design & Discovery, 2005, 2: 429
CrossRef
ADS
Google scholar
|
[9] |
B. Albert,
|
[10] |
D. C. Malins, N. L. Polissar, S. Schaeffer, Y. Su, and M. Vinson, Proc. Natl. Acad. Sci., 1998, 95: 7637
CrossRef
ADS
Google scholar
|
[11] |
T. Szőke, K. Kayser,
CrossRef
ADS
Google scholar
|
[12] |
R. Rossignol, R. Gilkerson, R. Aggeler, K. Yamagata, S. J. Remington, and R. A. Capaldi, Cancer Research, 2004, 64: 985
CrossRef
ADS
Google scholar
|
[13] |
V. Maximo and M. Sobrinho-Simoes, Virchows Arch., 2000, 437: 107, <patent>PubMed ID: 20445365</patent>
CrossRef
ADS
Google scholar
|
[14] |
M. J. Tisdale, J. Supportive Oncology, 2003, 1: 159
|
[15] |
B. Islam-Ali and M. S. Tisdale, Br. J. Cancer, 2001, 84: 1648
CrossRef
ADS
Google scholar
|
[16] |
T. M. Watchorn, I. D. Waddell, N. Dowidar,
|
[17] |
M. K. Trudy and J. R. McKee, Biochemistry: An Introduction, 2nd Ed., New York: McGraw-Hill Co., 1999
|
[18] |
A. Lehninger, Principles of Biochemistry, New York: Worth, 1982
|
[19] |
The CyberCell database (CCDB), E coli Statistics, 2006, see: http://redpoll.pharmacy.ualberta.ca/CCDB/cgi-bin/STAT NEW.cgi
|
[20] |
De Robertis, W. Nowinski, and F. Sanez, Cell Biology, 5th Ed., Philadelphia: Saunders, 2004
|
[21] |
L. E. Reichl, A Modern Course in Statistical Physics, Austin: University of Texas Press, 1980
|
[22] |
C. W. Gardiner, Handbook of Stochastic Method, 2nd Ed., Heidelberg: Springer-Verlag, 1985
|
[23] |
X. S. Xing, Science in China Ser. G, 2005, 35(4): 337
|
[24] |
D. Neri and R. Bicknell, Nature Reviews/Cancer, 2005, 5: 436
CrossRef
ADS
Google scholar
|
[25] |
H. Frohlich, Theory of Dielectricity, Oxford: Clarendon Press, 1949
|
[26] |
Y. Polevaya,
CrossRef
ADS
Google scholar
|
[27] |
S. T. Barsamian, B. L. Reid, and B. S. Thornton, IRCS Med. Sci. 1985, 13: 1103
|
[28] |
L. Sha, E. R. Ward, and B. Stroy, Proc. IEEE Sourtheast Con., 2002: 457
|
[29] |
D. Haemmerich,
CrossRef
ADS
Google scholar
|
[30] |
A. Jordan, R. Scholz, and P. Wust,
CrossRef
ADS
Google scholar
|
[31] |
K. R. Foster, IEEE Trans. Plasma Sci., 2000, 28: 15
CrossRef
ADS
Google scholar
|
[32] |
M. Simeonova, D. Wachner, and J. Gimsa, Bioelectrochemistry, 2002, 56: 215
CrossRef
ADS
Google scholar
|
[33] |
T. Kotnik and D. Mikalavcic, Bioelectromagnetics, 2000, 21: 385
CrossRef
ADS
Google scholar
|
[34] |
M. J. Jaroseski, R. Gilbert, and R. Heller, Advanced Drug Delivery Reviews, 1997, 26: 185
CrossRef
ADS
Google scholar
|
[35] |
Sergio Rodriguez-Cuevas,
CrossRef
ADS
Google scholar
|
[36] |
J. Larkin, D. Soden, G. C. O’Sullivan,
CrossRef
ADS
Google scholar
|
[37] |
S. J. Beebe, P. M. Fox, L. J. Rec,
CrossRef
ADS
Google scholar
|
[38] |
F. Q. Zhen,
|
[39] |
J. L. Rose and B. B. Goldberg, Basic Physics in Diagnostic Ultrasound, New York: John Wiley & Sons, 1979
|
[40] |
C. M. Sehgal and J. F. Greemleaf, J. Acoust. Soc. Am., 1982, 72(6): 1711
CrossRef
ADS
Google scholar
|
[41] |
H. Pauly and H. P. Schwan, J. Acoust. Soc. Am., 1971, 50(2): 692
CrossRef
ADS
Google scholar
|
[42] |
L. Bergmann, Ultrasound (Chinese Translation from Russian), Beijing: National Defense Industry Press, 1964
|
[43] |
F. Wu, Z. Wang, W. Chen,
CrossRef
ADS
Google scholar
|
[44] |
C. J. Ding and L. F. Luo, Proceedings of the First International Conference on Biomedical Engineering and Informatics (BMEI2008), 2008, Vol. 1: 483
|
/
〈 |
|
〉 |