Manipulating atomic states via optical orbital angular-momentum

LIU Xiong-jun1, LIU Xin2, KWEK Leong-Chuan3, OH ChooHiap4

PDF(859 KB)
PDF(859 KB)
Front. Phys. ›› 2008, Vol. 3 ›› Issue (2) : 113-125. DOI: 10.1007/s11467-008-0024-0

Manipulating atomic states via optical orbital angular-momentum

  • LIU Xiong-jun1, LIU Xin2, KWEK Leong-Chuan3, OH ChooHiap4
Author information +
History +

Abstract

Optical orbital angular-momentum (OAM) has more complex mechanics than the spin degree of photons, and may have a broad range of application. Manipulating atomic states via OAM has become an interesting topic. In this paper, we first review the general theory of generating adiabatic gauge field in ultracold atomic systems by coupling atoms to external optical fields with OAM, and point out the applications of the generated adiabatic gauge field. Then, we review our work in this field, including the generation of macroscopic superposition of vortex-antivortex states and spin Hall effect (SHE) in cold atoms.

Cite this article

Download citation ▾
LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap. Manipulating atomic states via optical orbital angular-momentum. Front. Phys., 2008, 3(2): 113‒125 https://doi.org/10.1007/s11467-008-0024-0

References

1. Parkins A S Marte P Zoller P Kimble H J Phys.Rev. Lett. 1993 713095. doi: 10.1103/PhysRevLett.71.3095
2. Pelizzari T Gardiner S A Cirac J I Zoller P Phys. Rev.Lett. 1995 753788. doi: 10.1103/PhysRevLett.75.3788
3. Cirac J I Zoller P Kimble H J Mabuchi H Phys. Rev.Lett. 1997 783221. doi: 10.1103/PhysRevLett.78.3221
4. Vitanov N V Fleischhauer M Shore B W Bergmann K Adv. At.Mol., Opt. Phys. 2001 4655
5. Kimble H J Phys. Scr. 1998 76127. doi: 10.1238/Physica.Topical.076a00127
6. Harris S E Field J E Kasapi A Phys. Rev. A 1992 46R29. doi: 10.1103/PhysRevA.46.R29
7. Scully M O Zubairy M S Quantum OpticsCambridgeCambridgeUniversity Press 1999
8. Hau L V Harris S E Dutton Z Behroozi C H Nature(London) 1999 397594. doi: 10.1038/17561
9. Fleischhauer M Lukin M D Phys. Rev. Lett. 2000 845094. doi: 10.1103/PhysRevLett.84.5094
10. Fleischhauer M Lukin M D Phys. Rev. A 2002 65022314. doi: 10.1103/PhysRevA.65.022314
11. Liu C Dutton Z Behroozi C H Hau L V Nature(London) 2001 409490. doi: 10.1038/35054017
12. Phillips D F Fleischhauer A Mair A Walsworth R L Lukin M D Phys. Rev. Lett. 2001 86783. doi: 10.1103/PhysRevLett.86.783
13. Fleischhauer M Gong S Q Phys. Rev. Lett. 2002 88070404. doi: 10.1103/PhysRevLett.88.070404
14. Kuang L M Zhou L Phys. Rev. A 2003 68043606. doi: 10.1103/PhysRevA.68.043606
15. Wu Y Saldana J Zhu Y Phys. Rev. A 2003 67013811. doi: 10.1103/PhysRevA.67.013811
16. Wu Y Deng L Phys. Rev. Lett. 2004 93143904. doi: 10.1103/PhysRevLett.93.143904
17. Wu Y Payne M G Hagley E W Deng L Phys. Rev.A 2004 70063812. doi: 10.1103/PhysRevA.70.063812
18. Wu Y Phys. Rev. A 2005 71053820. doi: 10.1103/PhysRevA.71.053820
19. Sun C P Li Y Liu X F Phys. Rev. Lett. 2003 91147903. doi: 10.1103/PhysRevLett.91.147903
20. Liu X J Jing H Ge M L Phys. Rev. A 2004 70055802. doi: 10.1103/PhysRevA.70.055802
21. Liu X J Jing H Liu X Ge M L Phys.Lett. A 2006 355437. doi: 10.1016/j.physleta.2006.02.031
22. Liu X J Liu X Liu Z X Kwek L C Oh C H Phys. Rev. A 2007 75023809. doi: 10.1103/PhysRevA.75.023809
23. André A Duan L-M Lukin M D Phys. Rev. Lett. 2002 88243602. doi: 10.1103/PhysRevLett.88.243602
24. Matsukevich D Kuzmich A Science 2004 306663. doi: 10.1126/science.1103346
25. Julsgaard B Sherson J Cirac J I Fiurasek J A Polzik E S Nature (London) 2004 432482. doi: 10.1038/nature03064
26. Blinov B B Moehring D L Duan L M Monroe C Nature(London) 2004 428153. doi: 10.1038/nature02377
27. Matsukevich D N Chaneliere T Bhattacharya M Lan S Y Jenkins S D Kennedy T A B Kuzmich A Phys. Rev. Lett. 2005 95040405. doi: 10.1103/PhysRevLett.95.040405
28. Rosenfeld W Berner S Volz J Weber M We. Infurter H Phys. Rev. Lett. 2007 98050504. doi: 10.1103/PhysRevLett.98.050504
29. Lewenstein M Sanpera A Ahufinger V Damski B Sen De A Sen U Adv. Phys. 2007 56243. doi: 10.1080/00018730701223200
30. Engels P Coddington I Haljan P C Cornell E A Phys.Rev. Lett. 2002 89100403. doi: 10.1103/PhysRevLett.89.100403
31. Paredes B Fedichev P Cirac J I Zoller P Phys. Rev.Lett. 2001 87010402. doi: 10.1103/PhysRevLett.87.010402
32. Paredes B Fedichev P Cirac J I Zoller P Phys. Rev.A 2002 66033609. doi: 10.1103/PhysRevA.66.033609
33. Abo-Shaeer J R Raman C Vogels J M Ketterle W Science 2001 292476. doi: 10.1126/science.1060182
34. Ho T L Phys. Rev. Lett. 2001 87060403. doi: 10.1103/PhysRevLett.87.060403
35. Fischer U R Baym G Phys. Rev. Lett. 2003 90140402. doi: 10.1103/PhysRevLett.90.140402
36. Søensen A S Demler E Lukin M D Phys. Rev. Lett. 2005 94086803. doi: 10.1103/PhysRevLett.94.086803
37. Abrikosov A A Sov. Phys. JETP 1957 51174
38. Juzeliunas G Ohberg P Phys. Rev. Lett. 2004 93033602. doi: 10.1103/PhysRevLett.93.033602
39. Jaksch D Zoller P New J. Phys. 2003 556. doi: 10.1088/1367‐2630/5/1/356
40. Juzeliunas G Ohberg P Ruseckas J Klein A Phys. Rev.A 2005 71053614. doi: 10.1103/PhysRevA.71.053614
41. Ruseckas J Juzeliunas G Ohberg P Fleischhauer M Phys. Rev. Lett. 2005 95010404. doi: 10.1103/PhysRevLett.95.010404
42. Gabriel M T Tores Juan P Lluis T Nature Physics 2007 3305. doi: 10.1038/nphys607
43. Allen L Barnett S M Padgett M J Optical Angular MomentumBristolInstitute of Physics 2003
44. Wright E M Arlt J DhoLaKia K Phys. Rev. A 2001 63013608. doi: 10.1103/PhysRevA.63.013608
45. Allen L Padgett M J Babiker M Prog. Opt. 1999 39291
46. Soskin M S Vasnetsov M V Prog. Opt. 2001 42219
47. Wilczek F Zee A Phys. Rev. Lett. 1984 522111. doi: 10.1103/PhysRevLett.52.2111
48. Wilson K G Phys. Rev. D 1974 102445. doi: 10.1103/PhysRevD.10.2445
49. Sun C P Ge M L Phys. Rev. D 1990 411349. doi: 10.1103/PhysRevD.41.1349
50. Liu X-J Liu X Kwek L C Oh C H Phys.Rev. Lett. 2007 98026602arXiv: cond-mat/0603083. doi: 10.1103/PhysRevLett.98.026602
51. Zhu S-L Fu H Wu C-J Zhang S-C Duan L-M Phys. Rev. Lett. 2006 97240401. doi: 10.1103/PhysRevLett.97.240401
52. Matthews M R Anderson B P Haljan P C Hall D S Wieman C E Cornell E A Phys. Rev. Lett. 1999 832498. doi: 10.1103/PhysRevLett.83.2498
53. Marzlin K-P Zhang W Wright E M Phys. Rev. Lett. 1997 794728. doi: 10.1103/PhysRevLett.79.4728
54. Nandi G Walser R Schleich W P Phys. Rev. A 2004 69063606. doi: 10.1103/PhysRevA.69.063606
55. Dutton Z Ruostekoski J Phys. Rev. Lett. 2004 93193602. doi: 10.1103/PhysRevLett.93.193602
56. Liu X-J Jing H Liu X Ge M-L Eur.Phys. J. D 2006 37261. doi: 10.1140/epjd/e2005‐00260‐0
57. Kapale1 K T Dowling J P Phys. Rev. Lett. 2005 95173601. doi: 10.1103/PhysRevLett.95.173601
58. Liu M Wen L H Xiong H W Zhan M S Phys.Rev. A 2006 73063620. doi: 10.1103/PhysRevA.73.063620
59. Faddeev L Niemi A J Phys. Rev. Lett. 2000 853416. doi: 10.1103/PhysRevLett.85.3416
60. Babaev E Faddeev L D Niemi A J Phys. Rev. B 2002 65100512. doi: 10.1103/PhysRevB.65.100512
61. Murakami S Nagaosa N Zhang S-C Science 2003 3011348. doi: 10.1126/science.1087128
62. Sinova J Culcer D Niu Q Sinitsyn N A Jungwirth T MacDonald A H Phys. Rev. Lett. 2004 92126603. doi: 10.1103/PhysRevLett.92.126603
63. Kato Y K Myers R C Gossard A C Awschalom D D Science 2004 3061910. doi: 10.1126/science.1105514
64. Wunderlich J Kaestner B Sinova J Jungwirth T Phys. Rev. Lett. 2005 94047204. doi: 10.1103/PhysRevLett.94.047204
65. Nikolic B K Souma S Zârbo L P Sinova J Phys. Rev.Lett. 2005 95046601. doi: 10.1103/PhysRevLett.95.046601
66. Murakami S Nagaosa N Zhang S-C Phys. Rev. Lett. 2004 93156804. doi: 10.1103/PhysRevLett.93.156804
67. Kane C L Mele E J Phys. Rev. Lett. 2005 95226801. doi: 10.1103/PhysRevLett.95.226801
68. Sinitsyn N A Hill J E Min Hongki Sinova J MacDonald A H arXiv: cond-mat/0602598
69. Bernevig B A Hughes Taylor L Zhang S-C Science 2006 3141757. doi: 10.1126/science.1133734
70. Bernevig B A Zhang S-C Phys. Rev. Lett. 2006 96106802. doi: 10.1103/PhysRevLett.96.106802
71. DeMarco B Jin D S Science 1999 2851703. doi: 10.1126/science.285.5434.1703
72. Gehm M E Preparation of an Optically-trapped Degenerate Fermi Gas of 6Li: Finding the Route to Degeneracy, Doctor Thesis,Duke University 2003
73. Shen L Senozan N Phillips N Phys. Rev. Lett. 1965 141025. doi: 10.1103/PhysRevLett.14.1025
74. Bouquet F Fisher R A Phillips N E Hinks D G Jorgensen J D Phys. Rev. Lett. 2001 87047001. doi: 10.1103/PhysRevLett.87.047001
75. Moulopoulos K Ashcroft N W Phys. Rev. B 1999 5912309. doi: 10.1103/PhysRevB.59.12309
76. Grimm R Weidemuller M Optical Dipole Traps for NeutralAtomsIn: Advances in Atomic, Molecularand Optical Physics 2000 Vol. 4295
77. Hadzibabic Z Gupta S Stan C A Schunck C H Zwierlein M W Dieckmann K Ketterle W Phys. Rev.Lett. 2003 91160401. doi: 10.1103/PhysRevLett.91.160401
78. Dudarev Artem M Diener Roberto B Carusotto Iacopo Niu Q Phys. Rev.Lett. 2004 92153005. doi: 10.1103/PhysRevLett.92.153005
79. Liu X-J Liu X Kwek L C Oh C H arXiv: condmat/0701506
80. Li Y Bruder C Sun C P Phys. Rev. Lett. 2007 99130403. doi: 10.1103/PhysRevLett.99.130403
81. Stanescu T D Zhang C W Galitski V Phys. Rev. Lett. 2007 99110403. doi: 10.1103/PhysRevLett.99.110403
82. Osterloh K Baig M Santos L Zoller P Lewenstein M Phys. Rev. Lett. 2005 95010403. doi: 10.1103/PhysRevLett.95.010403
AI Summary AI Mindmap
PDF(859 KB)

Accesses

Citations

Detail

Sections
Recommended

/