Manipulating atomic states via optical orbital
angular-momentum
LIU Xiong-jun1, LIU Xin2, KWEK Leong-Chuan3, OH ChooHiap4
Author information+
1.Department of Physics, National University of Singapore;Department of Physics, Texas A & M University; 2.Department of Physics, Texas A & M University; 3.Department of Physics, National University of Singapore;National Institute of Education, Nanyang Technological University; 4.Department of Physics, National University of Singapore
Show less
History+
Published
05 Jun 2008
Issue Date
05 Jun 2008
Abstract
Optical orbital angular-momentum (OAM) has more complex mechanics than the spin degree of photons, and may have a broad range of application. Manipulating atomic states via OAM has become an interesting topic. In this paper, we first review the general theory of generating adiabatic gauge field in ultracold atomic systems by coupling atoms to external optical fields with OAM, and point out the applications of the generated adiabatic gauge field. Then, we review our work in this field, including the generation of macroscopic superposition of vortex-antivortex states and spin Hall effect (SHE) in cold atoms.
LIU Xiong-jun, LIU Xin, KWEK Leong-Chuan, OH ChooHiap.
Manipulating atomic states via optical orbital
angular-momentum. Front. Phys., 2008, 3(2): 113‒125 https://doi.org/10.1007/s11467-008-0024-0
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
This is a preview of subscription content, contact us for subscripton.
References
1. Parkins A S Marte P Zoller P Kimble H J Phys.Rev. Lett. 1993 713095. doi: 10.1103/PhysRevLett.71.3095 2. Pelizzari T Gardiner S A Cirac J I Zoller P Phys. Rev.Lett. 1995 753788. doi: 10.1103/PhysRevLett.75.3788 3. Cirac J I Zoller P Kimble H J Mabuchi H Phys. Rev.Lett. 1997 783221. doi: 10.1103/PhysRevLett.78.3221 4. Vitanov N V Fleischhauer M Shore B W Bergmann K Adv. At.Mol., Opt. Phys. 2001 4655 5. Kimble H J Phys. Scr. 1998 76127. doi: 10.1238/Physica.Topical.076a00127 6. Harris S E Field J E Kasapi A Phys. Rev. A 1992 46R29. doi: 10.1103/PhysRevA.46.R29 7. Scully M O Zubairy M S Quantum OpticsCambridgeCambridgeUniversity Press 1999 8. Hau L V Harris S E Dutton Z Behroozi C H Nature(London) 1999 397594. doi: 10.1038/17561 9. Fleischhauer M Lukin M D Phys. Rev. Lett. 2000 845094. doi: 10.1103/PhysRevLett.84.5094 10. Fleischhauer M Lukin M D Phys. Rev. A 2002 65022314. doi: 10.1103/PhysRevA.65.022314 11. Liu C Dutton Z Behroozi C H Hau L V Nature(London) 2001 409490. doi: 10.1038/35054017 12. Phillips D F Fleischhauer A Mair A Walsworth R L Lukin M D Phys. Rev. Lett. 2001 86783. doi: 10.1103/PhysRevLett.86.783 13. Fleischhauer M Gong S Q Phys. Rev. Lett. 2002 88070404. doi: 10.1103/PhysRevLett.88.070404 14. Kuang L M Zhou L Phys. Rev. A 2003 68043606. doi: 10.1103/PhysRevA.68.043606 15. Wu Y Saldana J Zhu Y Phys. Rev. A 2003 67013811. doi: 10.1103/PhysRevA.67.013811 16. Wu Y Deng L Phys. Rev. Lett. 2004 93143904. doi: 10.1103/PhysRevLett.93.143904 17. Wu Y Payne M G Hagley E W Deng L Phys. Rev.A 2004 70063812. doi: 10.1103/PhysRevA.70.063812 18. Wu Y Phys. Rev. A 2005 71053820. doi: 10.1103/PhysRevA.71.053820 19. Sun C P Li Y Liu X F Phys. Rev. Lett. 2003 91147903. doi: 10.1103/PhysRevLett.91.147903 20. Liu X J Jing H Ge M L Phys. Rev. A 2004 70055802. doi: 10.1103/PhysRevA.70.055802 21. Liu X J Jing H Liu X Ge M L Phys.Lett. A 2006 355437. doi: 10.1016/j.physleta.2006.02.031 22. Liu X J Liu X Liu Z X Kwek L C Oh C H Phys. Rev. A 2007 75023809. doi: 10.1103/PhysRevA.75.023809 23. André A Duan L-M Lukin M D Phys. Rev. Lett. 2002 88243602. doi: 10.1103/PhysRevLett.88.243602 24. Matsukevich D Kuzmich A Science 2004 306663. doi: 10.1126/science.1103346 25. Julsgaard B Sherson J Cirac J I Fiurasek J A Polzik E S Nature (London) 2004 432482. doi: 10.1038/nature03064 26. Blinov B B Moehring D L Duan L M Monroe C Nature(London) 2004 428153. doi: 10.1038/nature02377 27. Matsukevich D N Chaneliere T Bhattacharya M Lan S Y Jenkins S D Kennedy T A B Kuzmich A Phys. Rev. Lett. 2005 95040405. doi: 10.1103/PhysRevLett.95.040405 28. Rosenfeld W Berner S Volz J Weber M We. Infurter H Phys. Rev. Lett. 2007 98050504. doi: 10.1103/PhysRevLett.98.050504 29. Lewenstein M Sanpera A Ahufinger V Damski B Sen De A Sen U Adv. Phys. 2007 56243. doi: 10.1080/00018730701223200 30. Engels P Coddington I Haljan P C Cornell E A Phys.Rev. Lett. 2002 89100403. doi: 10.1103/PhysRevLett.89.100403 31. Paredes B Fedichev P Cirac J I Zoller P Phys. Rev.Lett. 2001 87010402. doi: 10.1103/PhysRevLett.87.010402 32. Paredes B Fedichev P Cirac J I Zoller P Phys. Rev.A 2002 66033609. doi: 10.1103/PhysRevA.66.033609 33. Abo-Shaeer J R Raman C Vogels J M Ketterle W Science 2001 292476. doi: 10.1126/science.1060182 34. Ho T L Phys. Rev. Lett. 2001 87060403. doi: 10.1103/PhysRevLett.87.060403 35. Fischer U R Baym G Phys. Rev. Lett. 2003 90140402. doi: 10.1103/PhysRevLett.90.140402 36. Søensen A S Demler E Lukin M D Phys. Rev. Lett. 2005 94086803. doi: 10.1103/PhysRevLett.94.086803 37. Abrikosov A A Sov. Phys. JETP 1957 51174 38. Juzeliunas G Ohberg P Phys. Rev. Lett. 2004 93033602. doi: 10.1103/PhysRevLett.93.033602 39. Jaksch D Zoller P New J. Phys. 2003 556. doi: 10.1088/1367‐2630/5/1/356 40. Juzeliunas G Ohberg P Ruseckas J Klein A Phys. Rev.A 2005 71053614. doi: 10.1103/PhysRevA.71.053614 41. Ruseckas J Juzeliunas G Ohberg P Fleischhauer M Phys. Rev. Lett. 2005 95010404. doi: 10.1103/PhysRevLett.95.010404 42. Gabriel M T Tores Juan P Lluis T Nature Physics 2007 3305. doi: 10.1038/nphys607 43. Allen L Barnett S M Padgett M J Optical Angular MomentumBristolInstitute of Physics 2003 44. Wright E M Arlt J DhoLaKia K Phys. Rev. A 2001 63013608. doi: 10.1103/PhysRevA.63.013608 45. Allen L Padgett M J Babiker M Prog. Opt. 1999 39291 46. Soskin M S Vasnetsov M V Prog. Opt. 2001 42219 47. Wilczek F Zee A Phys. Rev. Lett. 1984 522111. doi: 10.1103/PhysRevLett.52.2111 48. Wilson K G Phys. Rev. D 1974 102445. doi: 10.1103/PhysRevD.10.2445 49. Sun C P Ge M L Phys. Rev. D 1990 411349. doi: 10.1103/PhysRevD.41.1349 50. Liu X-J Liu X Kwek L C Oh C H Phys.Rev. Lett. 2007 98026602arXiv: cond-mat/0603083. doi: 10.1103/PhysRevLett.98.026602 51. Zhu S-L Fu H Wu C-J Zhang S-C Duan L-M Phys. Rev. Lett. 2006 97240401. doi: 10.1103/PhysRevLett.97.240401 52. Matthews M R Anderson B P Haljan P C Hall D S Wieman C E Cornell E A Phys. Rev. Lett. 1999 832498. doi: 10.1103/PhysRevLett.83.2498 53. Marzlin K-P Zhang W Wright E M Phys. Rev. Lett. 1997 794728. doi: 10.1103/PhysRevLett.79.4728 54. Nandi G Walser R Schleich W P Phys. Rev. A 2004 69063606. doi: 10.1103/PhysRevA.69.063606 55. Dutton Z Ruostekoski J Phys. Rev. Lett. 2004 93193602. doi: 10.1103/PhysRevLett.93.193602 56. Liu X-J Jing H Liu X Ge M-L Eur.Phys. J. D 2006 37261. doi: 10.1140/epjd/e2005‐00260‐0 57. Kapale1 K T Dowling J P Phys. Rev. Lett. 2005 95173601. doi: 10.1103/PhysRevLett.95.173601 58. Liu M Wen L H Xiong H W Zhan M S Phys.Rev. A 2006 73063620. doi: 10.1103/PhysRevA.73.063620 59. Faddeev L Niemi A J Phys. Rev. Lett. 2000 853416. doi: 10.1103/PhysRevLett.85.3416 60. Babaev E Faddeev L D Niemi A J Phys. Rev. B 2002 65100512. doi: 10.1103/PhysRevB.65.100512 61. Murakami S Nagaosa N Zhang S-C Science 2003 3011348. doi: 10.1126/science.1087128 62. Sinova J Culcer D Niu Q Sinitsyn N A Jungwirth T MacDonald A H Phys. Rev. Lett. 2004 92126603. doi: 10.1103/PhysRevLett.92.126603 63. Kato Y K Myers R C Gossard A C Awschalom D D Science 2004 3061910. doi: 10.1126/science.1105514 64. Wunderlich J Kaestner B Sinova J Jungwirth T Phys. Rev. Lett. 2005 94047204. doi: 10.1103/PhysRevLett.94.047204 65. Nikolic B K Souma S Zârbo L P Sinova J Phys. Rev.Lett. 2005 95046601. doi: 10.1103/PhysRevLett.95.046601 66. Murakami S Nagaosa N Zhang S-C Phys. Rev. Lett. 2004 93156804. doi: 10.1103/PhysRevLett.93.156804 67. Kane C L Mele E J Phys. Rev. Lett. 2005 95226801. doi: 10.1103/PhysRevLett.95.226801 68. Sinitsyn N A Hill J E Min Hongki Sinova J MacDonald A H arXiv: cond-mat/0602598 69. Bernevig B A Hughes Taylor L Zhang S-C Science 2006 3141757. doi: 10.1126/science.1133734 70. Bernevig B A Zhang S-C Phys. Rev. Lett. 2006 96106802. doi: 10.1103/PhysRevLett.96.106802 71. DeMarco B Jin D S Science 1999 2851703. doi: 10.1126/science.285.5434.1703 72. Gehm M E Preparation of an Optically-trapped Degenerate Fermi Gas of 6Li: Finding the Route to Degeneracy, Doctor Thesis,Duke University 2003 73. Shen L Senozan N Phillips N Phys. Rev. Lett. 1965 141025. doi: 10.1103/PhysRevLett.14.1025 74. Bouquet F Fisher R A Phillips N E Hinks D G Jorgensen J D Phys. Rev. Lett. 2001 87047001. doi: 10.1103/PhysRevLett.87.047001 75. Moulopoulos K Ashcroft N W Phys. Rev. B 1999 5912309. doi: 10.1103/PhysRevB.59.12309 76. Grimm R Weidemuller M Optical Dipole Traps for NeutralAtomsIn: Advances in Atomic, Molecularand Optical Physics 2000 Vol. 4295 77. Hadzibabic Z Gupta S Stan C A Schunck C H Zwierlein M W Dieckmann K Ketterle W Phys. Rev.Lett. 2003 91160401. doi: 10.1103/PhysRevLett.91.160401 78. Dudarev Artem M Diener Roberto B Carusotto Iacopo Niu Q Phys. Rev.Lett. 2004 92153005. doi: 10.1103/PhysRevLett.92.153005 79. Liu X-J Liu X Kwek L C Oh C H arXiv: condmat/0701506 80. Li Y Bruder C Sun C P Phys. Rev. Lett. 2007 99130403. doi: 10.1103/PhysRevLett.99.130403 81. Stanescu T D Zhang C W Galitski V Phys. Rev. Lett. 2007 99110403. doi: 10.1103/PhysRevLett.99.110403 82. Osterloh K Baig M Santos L Zoller P Lewenstein M Phys. Rev. Lett. 2005 95010403. doi: 10.1103/PhysRevLett.95.010403
AI Summary 中Eng×
Note: Please note that the content below is AI-generated. Frontiers Journals website shall not be held liable for any consequences associated with the use of this content.