Blazing fast MOF magic: carbon nanotubes derived from MOFs for catalysis

Chuan Xu , Junge Zhang , Jiaxin Liu , Weiqiang Zhou , Xianghai Song , Xin Liu , Yangyang Yang , Qian Yang , Yi Guo , Yuqiao Zhang , Jisheng Zhang , Pengwei Huo , Long Zhang

Front. Mater. Sci. ›› 2025, Vol. 19 ›› Issue (4) : 250750

PDF (1650KB)
Front. Mater. Sci. ›› 2025, Vol. 19 ›› Issue (4) : 250750 DOI: 10.1007/s11706-025-0750-z
LETTER

Blazing fast MOF magic: carbon nanotubes derived from MOFs for catalysis

Author information +
History +
PDF (1650KB)

Abstract

We developed metal–organic framework (MOF) derivatives via rapid thermal processing (RTP) of ZIF-67, achieving synthesis in ~30 min far faster than conventional pyrolysis. These derivatives retain the morphology of ZIF-67, integrating carbon nanotubes and nickel‒cobalt nanoparticles within a porous carbon matrix. With surface areas of ~ 208–225 m2·g−1, they excel in styrene epoxidation, yielding 80% conversion and 50%–60% selectivity. This efficient RTP method enhances stability and activity, offering a scalable approach to advance MOF-based catalysis.

Graphical abstract

Keywords

metal–organic framework / rapid thermal processing / catalysis

Cite this article

Download citation ▾
Chuan Xu, Junge Zhang, Jiaxin Liu, Weiqiang Zhou, Xianghai Song, Xin Liu, Yangyang Yang, Qian Yang, Yi Guo, Yuqiao Zhang, Jisheng Zhang, Pengwei Huo, Long Zhang. Blazing fast MOF magic: carbon nanotubes derived from MOFs for catalysis. Front. Mater. Sci., 2025, 19(4): 250750 DOI:10.1007/s11706-025-0750-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Howarth A J, Liu Y, Li P, . Chemical, thermal and mechanical stabilities of metal–organic frameworks.Nature Reviews: Materials, 2016, 1(3): 15018

[2]

Hayat A, Rauf S, Al Alwan B, . Recent advance in MOFs and MOF-based composites: synthesis, properties, and applications.Materials Today. Energy, 2024, 41: 101542

[3]

Furukawa H, Cordova K E, O’Keeffe M, . The chemistry and applications of metal–organic frameworks.Science, 2013, 341(6149): 1230444

[4]

Chaouiki A, Fatimah S, Chafiq M, . State-of-the-art advancements in metal–organic framework nanoarchitectures for catalytic applications.Applied Materials Today, 2024, 38: 102224

[5]

Wu Q, Wang J, Jin H, . MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property.Materials Letters, 2019, 244: 138–141

[6]

Xu S, Dong A, Hu Y, . Multidimensional MOF-derived carbon nanomaterials for multifunctional applications.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2023, 11(18): 9721–9747

[7]

Ramadhan Ikreedeegh R, Arif Hossen M, Sherryna A, . Recent advances on synthesis and photocatalytic applications of MOF-derived carbon materials: a review.Coordination Chemistry Reviews, 2024, 510: 215834

[8]

Cheng N, Ren L, Xu X, . Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts.Advanced Energy Materials, 2018, 8(25): 1801257

[9]

Jadhav H S, Bandal H A, Ramakrishna S, . Critical review, recent updates on zeolitic imidazolate framework-67 (ZIF-67) and its derivatives for electrochemical water splitting.Advanced Materials, 2022, 34(11): 2107072

[10]

Shang L, Bian T, Zhang B, . Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions.Angewandte Chemie International Edition, 2014, 53(1): 250–254

[11]

Cai G, Yan P, Zhang L, . Metal–organic framework-based hierarchically porous materials: synthesis and applications.Chemical Reviews, 2021, 121(20): 12278–12326

[12]

Zhu Y, Yue K, Xia C, . Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc–air batteries.Nano-Micro Letters, 2021, 13(1): 137

[13]

Payam A F, Khalil S, Chakrabarti S . Synthesis and characterization of MOF-derived structures: recent advances and future perspectives.Small, 2024, 20(32): 2310348

[14]

Liu H, Liu W, Xue G, . Modulating charges of dual sites in multivariate metal–organic frameworks for boosting selective aerobic epoxidation of alkenes.Journal of the American Chemical Society, 2023, 145(20): 11085–11096

[15]

Meng J, Liu Z, Liu X, . Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction.Journal of Materials Science and Technology, 2021, 66: 186–192

[16]

Wang K, Li Y, Xie L H, . Construction and application of base-stable MOFs: a critical review.Chemical Society Reviews, 2022, 51(15): 6417–6441

[17]

Dummert S V, Saini H, Hussain M Z, . Cyclodextrin metal–organic frameworks and derivatives: recent developments and applications.Chemical Society Reviews, 2022, 51(12): 5175–5213

[18]

Zhang Y, Zheng X, Guo X, . Design of modified MOFs electrocatalysts for water splitting: high current density operation and long-term stability.Applied Catalysis B: Environmental, 2023, 336: 122891

[19]

Du R, Wu Y, Yang Y, . Porosity engineering of MOF-based materials for electrochemical energy storage.Advanced Energy Materials, 2021, 11(20): 2100154

[20]

Meng J, Niu C, Xu L, . General oriented formation of carbon nanotubes from metal–organic frameworks.Journal of the American Chemical Society, 2017, 139(24): 8212–8221

[21]

Han X, Cao Y, Liu Y, . Liquid gallium-assisted pyrolysis of MOF affording CNT non-hollow frameworks in high yields for high-performance sodium-ion battery anode.Advanced Materials, 2024, 36(36): 2407274

[22]

Wu Q, Wang J, Jin H, . MOF-derived rambutan-like nanoporous carbon/nanotubes/Co composites with efficient microwave absorption property.Materials Letters, 2019, 244: 138–141

[23]

Yang J, Zhao L, Sun Y, . ZIF-67-derived dispersed cobalt modified carbon nanotubes efficiently activate peroxomonosulfate for degradation of organic pollutants.Journal of Water Process Engineering, 2024, 66: 105910

[24]

Wang D, Zhao Z Y, Wang P, . Synthesis of MOF-derived nitrogen-doped carbon microtubules via template self-consumption.Rare Metals, 2022, 41(8): 2582–2587

[25]

Hao L, Li X, Zhi L . Carbonaceous electrode materials for supercapacitors.Advanced Materials, 2013, 25(28): 3899–3904

[26]

Han X, Cao Y, Liu Y, . Liquid gallium-assisted pyrolysis of MOF affording CNT non-hollow frameworks in high yields for high-performance sodium-ion battery anode.Advanced Materials, 2024, 36(36): 2407274

[27]

Lian P, Zhu X, Liang S, . Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries.Electrochimica Acta, 2010, 55(12): 3909–3914

[28]

Zhou Y, Wang L, Chen S, . Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries.Nature Photonics, 2015, 9(6): 409–415

[29]

Yu G, Sun J, Muhammad F, . Cobalt-based metal organic framework as precursor to achieve superior catalytic activity for aerobic epoxidation of styrene.RSC Advances, 2014, 4(73): 38804–38811

[30]

Zhou Y X, Chen Y Z, Cao L, . Conversion of a metal–organic framework to N-doped porous carbon incorporating Co and CoO nanoparticles: direct oxidation of alcohols to esters.Chemical Communications, 2015, 51(39): 8292–8295

[31]

Li B, Jin X, Zhu Y, . Epoxidation of styrene using carbon nanotubes-supported cobalt catalysts.Inorganica Chimica Acta, 2014, 419: 66–72

[32]

Yang J, Zhao L, Sun Y, . ZIF-67-derived dispersed cobalt modified carbon nanotubes efficiently activate peroxomonosulfate for degradation of organic pollutants.Journal of Water Process Engineering, 2024, 66: 105910

[33]

Zhou W, Liang Teo W, Wang D, . Efficient noble-metal-free catalysts supported by three-dimensional ordered hierarchical porous carbon.Chemistry - an Asian Journal, 2020, 15(16): 2513–2519

[34]

Shi Z Q, Jiao L X, Sun J, . Cobalt nanoparticles in hollow mesoporous spheres as a highly efficient and rapid magnetically separable catalyst for selective epoxidation of styrene with molecular oxygen.RSC Advances, 2014, 4(1): 47–53

[35]

Watzky M A, Finke R G . Transition metal nanocluster formation kinetic and mechanistic studies.A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. Journal of the American Chemical Society, 1997, 119(43): 10382–10400

[36]

Foo K Y, Hameed B H . Insights into the modeling of adsorption isotherm systems.Chemical Engineering Journal, 2010, 156(1): 2–10

[37]

Wang Y, Tian Z, Yang Q, . Atomically dispersed dual metal sites boost the efficiency of olefins epoxidation in tandem with CO2 cycloaddition.Nano Letters, 2022, 22(20): 8381–8388

[38]

Zou P, Li J, Zhang Y, . Magnetic-field-induced rapid synthesis of defect-enriched Ni–Co nanowire membrane as highly efficient hydrogen evolution electrocatalyst.Nano Energy, 2018, 51: 349–357

[39]

Liu J, Chen T, Jian P, . Hierarchical 0D/2D Co3O4 hybrids rich in oxygen vacancies as catalysts towards styrene epoxidation reaction.Chinese Journal of Catalysis, 2018, 39(12): 1942–1950

[40]

Batra M S, Dwivedi R, Prasad R . Recent developments in heterogeneous catalyzed epoxidation of styrene to styrene oxide.ChemistrySelect, 2019, 4(40): 11636–11673

[41]

Liu X, Ding J, Lin X, . Zr-doped CeO2 nanorods as versatile catalyst in the epoxidation of styrene with tert-butyl hydroperoxide as the oxidant.Applied Catalysis A: General, 2015, 503: 117–123

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1650KB)

Supplementary files

Supplementary materials

50

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/