Biomimetic mineralization synthesis of cobalt-doped magnetoferritin for enhancing magnetic hyperthermia

Jiacheng Yu , Yuele Zhang , Yuxin Fang , Yongxin Pan , Changqian Cao

Front. Mater. Sci. ›› 2025, Vol. 19 ›› Issue (2) : 250729

PDF (2895KB)
Front. Mater. Sci. ›› 2025, Vol. 19 ›› Issue (2) : 250729 DOI: 10.1007/s11706-025-0729-9
RESEARCH ARTICLE

Biomimetic mineralization synthesis of cobalt-doped magnetoferritin for enhancing magnetic hyperthermia

Author information +
History +
PDF (2895KB)

Abstract

Magnetic hyperthermia therapy (MHT) has emerged as a promising non-invasive approach for tumor treatment. However, the clinical translation of MHT has been significantly hampered by two critical challenges: insufficient magnetothermal conversion efficiency and compromised biosecurity of conventional magnetic nanoparticles. Addressing these limitations, we developed an innovative biomimetic synthesis strategy by engineering cobalt-doped magnetoferritins (PcFn-Co-x) within recombinant hyperthermophilic archaeon ferritin (PcFn) cages at a precisely controlled biomineralization temperature of 90 °C. This breakthrough approach yielded monodisperse PcFn-Co-x nanoparticles with core sizes (13.3‒19.6 nm) that remarkably surpass the conventional size limitations of ferritin inner cages. The optimized PcFn-Co-5 nanoparticles demonstrated unprecedented magnetothermal performance, achieving a record-high specific absorption rate (SAR) of 910 W·g−1 under biologically safe excitation conditions (33 kA·m−1 and 150 kHz). Magnetic characterization revealed that the cobalt doping significantly modulates the magnetic energy barrier by enhancing coercivity and magnetic anisotropy, with SAR values showing a remarkable positive correlation with these magnetic parameters. This work presents a novel paradigm for the biomimetic synthesis of high-performance magnetoferritins and pave the way for their clinical application in MHT.

Graphical abstract

Keywords

magnetic hyperthermia therapy / magnetoferritin / biomimetic biomineralization / cobalt ferrite / magnetic nanoparticle

Cite this article

Download citation ▾
Jiacheng Yu, Yuele Zhang, Yuxin Fang, Yongxin Pan, Changqian Cao. Biomimetic mineralization synthesis of cobalt-doped magnetoferritin for enhancing magnetic hyperthermia. Front. Mater. Sci., 2025, 19(2): 250729 DOI:10.1007/s11706-025-0729-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee J H, Jang J, Choi J, . Exchange-coupled magnetic nanoparticles for efficient heat induction.Nature Nanotechnology, 2011, 6(7): 418–422

[2]

Espinosa A, Di Corato R, Kolosnjaj-Tabi J, . Duality of iron oxide nanoparticles in cancer therapy: amplification of heating efficiency by magnetic hyperthermia and photothermal bimodal treatment.ACS Nano, 2016, 10(2): 2436–2446

[3]

Fortin J P, Wilhelm C, Servais J, . Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.Journal of the American Chemical Society, 2007, 129(9): 2628–2635

[4]

Song Y, Li D, Lu Y, . Ferrimagnetic mPEG-b-PHEP copolymer micelles loaded with iron oxide nanocubes and emodin for enhanced magnetic hyperthermia-chemotherapy.National Science Review, 2020, 7(4): 723–736

[5]

Han X, Sun S, Yang N, . Nano-engineered magnesium implants for magnetothermal enhanced pyroptosis to boost immunotherapy.Advanced Functional Materials, 2024, 34(46): 2405836

[6]

Hergt R, Dutz S . Magnetic particle hyperthermia — biophysical limitations of a visionary tumour therapy.Journal of Magnetism and Magnetic Materials, 2007, 311(1): 187–192

[7]

Zeth K . Dps biomineralizing proteins: multifunctional architects of nature.Biochemical Journal, 2012, 445(3): 297–311

[8]

Harrison P M, Fischbach F A, Hoy T G, . Ferric oxyhydroxide core of ferritin.Nature, 1967, 216(5121): 1188–1190

[9]

McHugh C A, Fontana J, Nemecek D, . A virus capsid-like nanocompartment that stores iron and protects bacteria from oxidative stress.EMBO Journal, 2014, 33(17): 1896–1911

[10]

Zhao Y Z, Liang M M, Li X, . Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging.ACS Nano, 2016, 10(4): 4184–4191

[11]

Honarmand Ebrahimi K, Hagedoorn P L, Hagen W R . Unity in the biochemistry of the iron-storage proteins ferritin and bacterioferritin.Chemical Reviews, 2015, 115(1): 295–326

[12]

Meldrum F C, Heywood B R, Mann S . Magnetoferritin: in vitro synthesis of a novel magnetic protein.Science, 1992, 257(5069): 522–523

[13]

Fan K L, Cao C Q, Pan Y X, . Magnetoferritin nanoparticles for targeting and visualizing tumour tissues.Nature Nanotechnology, 2012, 7: 833

[14]

Cao C, Wang X, Cai Y, . Targeted in vivo imaging of microscopic tumors with ferritin-based nanoprobes across biological barriers.Advanced Materials, 2014, 26(16): 2566–2571

[15]

Fantechi E, Innocenti C, Zanardelli M, . A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages.ACS Nano, 2014, 8(5): 4705–4719

[16]

Tatur J, Hagedoorn P L, Overeijnder M L, . A highly thermostable ferritin from the hyperthermophilic archaeal anaerobe Pyrococcus furiosus.Extremophiles, 2006, 10(2): 139–148

[17]

Parker M J, Allen M A, Ramsay B, . Expanding the temperature range of biomimetic synthesis using a ferritin from the hyperthermophile Pyrococcus furiosus.Chemistry of Materials, 2008, 20(4): 1541–1547

[18]

Yu J C, Cao C Q, Fang F J, . Enhanced magnetic hyperthermia of magnetoferritin through synthesis at elevated temperature.International Journal of Molecular Sciences, 2022, 23(7): 4012

[19]

Yu J C, Zhang T W, Xu H T, . Thermostable iron oxide nanoparticle synthesis within recombinant ferritins from the hyperthermophile Pyrococcus yayanosii CH1.RSC Advances, 2019, 9(67): 39381–39393

[20]

Zeng X, Birrien J L, Fouquet Y, . Pyrococcus CH1, an obligate piezophilic hyperthermophile: extending the upper pressure-temperature limits for life.ISME Journal, 2009, 3(7): 873–876

[21]

Fantechi E, Innocenti C, Ferretti A M, . Increasing the magnetic anisotropy of a natural system: Co-doped magnetite mineralized in ferritin shells.Journal of Nanoscience and Nanotechnology, 2019, 19(8): 4964–4973

[22]

Valero E, Tambalo S, Marzola P, . Magnetic nanoparticles-templated assembly of protein subunits: a new platform for carbohydrate-based MRI nanoprobes.Journal of the American Chemical Society, 2011, 133(13): 4889–4895

[23]

Lin X, Xie J, Niu G, . Chimeric ferritin nanocages for multiple function loading and multimodal imaging.Nano Letters, 2011, 11(2): 814–819

[24]

Hikono T, Uraoka Y, Fuyuki T, . Novel method for making nanodot arrays using a cage-like protein.Japanese Journal of Applied Physics, 2003, 42(Part 2, No. 4A): L398–L399

[25]

Cao J L, Ng E S, McNaughton D, . The characterisation of pluripotent and multipotent stem cells using Fourier transform infrared microspectroscopy.International Journal of Molecular Sciences, 2013, 14(9): 17453–17476

[26]

Xu H T, Pan Y X . Experimental evaluation on the heating efficiency of magnetoferritin nanoparticles in an alternating magnetic field.Nanomaterials, 2019, 9(10): 1457

[27]

Ji W C, Hu P, Wang X Y, . High heating ability of one-step carbothermal reduction method of Fe3O4 nanoparticles upon magnetic field.Journal of Alloys and Compounds, 2021, 866: 158952

[28]

Gawali S L, Shelar S B, Gupta J, . Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application.International Journal of Biological Macromolecules, 2021, 166: 851–860

[29]

Vamvakidis K, Maniotis N, Dendrinou-Samara C . Magneto-fluorescent nanocomposites: experimental and theoretical linkage for the optimization of magnetic hyperthermia.Nanoscale, 2021, 13(13): 6426–6438

[30]

Lartigue L, Innocenti C, Larionova J, . Water dispersible carbohydrate-coated ferrite nanoparticles.effect of cobalt doping in magneto-thermal properties. Journal of Nanoscience and Nanotechnology, 2019, 19(8): 5000–5007

[31]

Suthar M, Khare D, Gangwar A, . Structural, magnetic, and biocompatibility evaluations of chromium substituted barium hexaferrite (Co2–Y) for hyperthermia application.Materials Chemistry and Physics, 2023, 296: 127348

[32]

Somvanshi S B, Jadhav S A, Gawali S S, . Core–shell structured superparamagnetic Zn‒Mg ferrite nanoparticles for magnetic hyperthermia applications.Journal of Alloys and Compounds, 2023, 947: 169574

[33]

Phukan G, Kar M, Borah J P . Interplay of anisotropy energy barrier and self-heating efficiency of cobalt-substituted CuFe2O4 nanoparticles.ACS Applied Materials & Interfaces, 2024, 16(1): 261–271

[34]

Wohlfarth P . A mechanism of magnetic hysteresis in heterogeneous alloys.Philosophical Transactions of the Royal Society of London. Series A: Mathematical and Physical Sciences, 1948, 240(826): 599–642

[35]

Aquino V R R, Figueiredo L C, Coaquira J A H, . Magnetic interaction and anisotropy axes arrangement in nanoparticle aggregates can enhance or reduce the effective magnetic anisotropy.Journal of Magnetism and Magnetic Materials, 2020, 498: 166170

[36]

Franco A, Machado F L A, Zapf V S . Magnetic properties of nanoparticles of cobalt ferrite at high magnetic field.Journal of Applied Physics, 2011, 110(5): 053913

[37]

Sathya A, Guardia P, Brescia R, . CoxFe3−xO4 nanocubes for theranostic applications: effect of cobalt content and particle size.Chemistry of Materials, 2016, 28(6): 1769–1780

[38]

Sun S, Zeng H . Size-controlled synthesis of magnetite nanoparticles.Journal of the American Chemical Society, 2002, 124(28): 8204–8205

[39]

López-Ortega A, Estrader M, Salazar-Alvarez G, . Strongly exchange coupled inverse ferrimagnetic soft/hard, MnxFe3−xO4/FexMn3−xO4, core/shell heterostructured nanoparticles.Nanoscale, 2012, 4(16): 5138–5147

[40]

Gahrouei Z E, Labbaf S, Kermanpur A . Cobalt doped magnetite nanoparticles: synthesis, characterization, optimization and suitability evaluations for magnetic hyperthermia applications.Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116: 113759

[41]

Cao C Q, Tian L X, Liu Q S, . Magnetic characterization of noninteracting, randomly oriented, nanometer-scale ferrimagnetic particles.Journal of Geophysical Research, 2010, 115(B7): B07103

[42]

Dormann J L, Fiorani D, Tronc E. Magnetic relaxation in fine-particle systems. In: Prigogine I, Rice S A, eds. Advances in Chemical Physics (Vol. 98). John Wiley & Sons Inc, 1997, 283–494

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2895KB)

Supplementary files

FMS-25729-OF-Yjc_suppl_1

215

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/