Application of Ag–Cu–Ti active metal composite filler in ceramic joining: a review
Yuhang Li, Jun WANG, Ziyan SHEN, Hangli Qian, Wanliang Zhang, Kaiyu Zhang, Danqing Ying, Qihang Zhou, Chengshuang Zhou, Lin Zhang
Application of Ag–Cu–Ti active metal composite filler in ceramic joining: a review
As a structural and functional material with excellent properties, ceramics play an extremely important role in a wide range of industries, including life and production. To expand the range of applications for ceramic materials, ceramics are often joined to metals and then used. Among the physical and chemical joining methods of ceramics to metals, the AMB method is efficient and simple, suitable for industrial applications, and has been a hot topic of research. However, due to the problems of residual stresses caused by the large difference in thermal expansion coefficients between ceramic and metal brazing, composite fillers have become a very worthwhile solution by regulating the physical properties of the brazing material and improving the weld structure. This review describes the wetting principle and application of Ag‒Cu‒Ti active metal filler in the field of ceramic joining, with emphasis on the current stage of composite filler, and discusses the influence on the former brazing properties and organization after the introduction of dissimilar materials.
brazing / composite filler / residual stress / active metal / ceramic‒metal joints
[1] |
Xu M, Girish Y R, Rakesh K P,
CrossRef
Google scholar
|
[2] |
Ayode Otitoju T, Ugochukwu Okoye P, Chen G,
CrossRef
Google scholar
|
[3] |
Xiao Z, Yu S, Li Y,
CrossRef
Google scholar
|
[4] |
An Q, Chen J, Ming W,
CrossRef
Google scholar
|
[5] |
Li D, Lin Y, Yuan Q,
CrossRef
Google scholar
|
[6] |
Zhang H, Wei T, Zhang Q,
CrossRef
Google scholar
|
[7] |
Wang X, Gao X, Zhang Z,
CrossRef
Google scholar
|
[8] |
Raszewski Z, Brzakalski D, Derpenski L,
CrossRef
Google scholar
|
[9] |
Deng N, Zhao J, Yang L,
CrossRef
Google scholar
|
[10] |
Zeng X, Li E, Xia G,
CrossRef
Google scholar
|
[11] |
Li C, Sun W, Lu Z,
CrossRef
Google scholar
|
[12] |
Arumugham T, Kaleekkal N J, Gopal S,
CrossRef
Google scholar
|
[13] |
Sayyed M I, Jecong J F M, Hila F C,
CrossRef
Google scholar
|
[14] |
Chen C, Han A, Ye M,
CrossRef
Google scholar
|
[15] |
Mir F A, Khan N Z, Parvez S . Recent advances and development in joining ceramics to metals.Materials Today: Proceedings, 2021, 46: 6570–6575
CrossRef
Google scholar
|
[16] |
Ahn B . Recent advances in brazing fillers for joining of dissimilar materials.Metals, 2021, 11(7): 1037
CrossRef
Google scholar
|
[17] |
Mishra S, Sharma A, Jung D H,
CrossRef
Google scholar
|
[18] |
Zhao L, Li X, Hou J,
CrossRef
Google scholar
|
[19] |
Singh M M, Vijaya G, Krupashankara M S,
CrossRef
Google scholar
|
[20] |
Wu L, Meng L, Wang Y,
CrossRef
Google scholar
|
[21] |
Tillmann W, Khalil O, Baumann I,
CrossRef
Google scholar
|
[22] |
Casalegno V, Smeacetto F, Salvo M,
CrossRef
Google scholar
|
[23] |
Zhang Y, Chen Y K, Yu D S,
CrossRef
Google scholar
|
[24] |
Penilla E H, Devia-Cruz L F, Wieg A T,
CrossRef
Google scholar
|
[25] |
Sonomura H, Ozaki T, Katagiri K,
CrossRef
Google scholar
|
[26] |
He H, Fu R, Wang D,
CrossRef
Google scholar
|
[27] |
Hynes N R J, Velu P S, Kumar R,
CrossRef
Google scholar
|
[28] |
Wu S, Qin Y, Fu D,
CrossRef
Google scholar
|
[29] |
Yang Z, Lin J, Wang Y,
CrossRef
Google scholar
|
[30] |
Mu R J, Yang Z W, Niu S Y,
CrossRef
Google scholar
|
[31] |
Li Z, Xu Z, Ma Z,
CrossRef
Google scholar
|
[32] |
Li Z, Xu Z, He P,
CrossRef
Google scholar
|
[33] |
Chen Y Y, Qian G Y, Wang Z,
CrossRef
Google scholar
|
[34] |
Wang Z, Hu W, Yuan S, ,
|
[35] |
Ong F S, Rheingans B, Goto K,
CrossRef
Google scholar
|
[36] |
Guo W, Hou J, Wan M,
CrossRef
Google scholar
|
[37] |
Wang Y, Liu M, Zhang H,
CrossRef
Google scholar
|
[38] |
Contarato F, Bach M, Krier J,
CrossRef
Google scholar
|
[39] |
Jiang H, Li C, Mao X,
CrossRef
Google scholar
|
[40] |
Suresh S, Giannakopoulos A E . A new method for estimating residual stresses by instrumented sharp indentation.Acta Materialia, 1998, 46(16): 5755–5767
CrossRef
Google scholar
|
[41] |
Kattamis T Z, Chen M, Skolianos S,
CrossRef
Google scholar
|
[42] |
Wei Z, Jiang W, Song M,
CrossRef
Google scholar
|
[43] |
Chung Y S, Iseki T . Interfacial phenomena in joining of ceramics by active metal brazing alloy.Engineering Fracture Mechanics, 1991, 40(4–5): 941–949
CrossRef
Google scholar
|
[44] |
Tadmor R, Das R, Gulec S,
CrossRef
Google scholar
|
[45] |
Song X G, Zhao Y X, Hu S P,
CrossRef
Google scholar
|
[46] |
Huang Y, Li Q P, Xue X P,
CrossRef
Google scholar
|
[47] |
Ye D L, Hu J H. Practical Handbook of Thermodynamic Data for Inorganic Compounds. 2nd ed. Beijing: Metallurgic Industry Press, 2002 (in Chinese)
|
[48] |
Dezellus O, Arroyave R, Fries S G . Thermodynamic modelling of the Ag‒Cu‒Ti ternary system.International Journal of Materials Research, 2011, 102(3): 286–297
CrossRef
Google scholar
|
[49] |
Zhong Z H, Hou G X, Zhu Z X,
CrossRef
Google scholar
|
[50] |
Xiong J H, Huang J H, Zhang H,
CrossRef
Google scholar
|
[51] |
Miao Q, Ding W, Zhu Y,
CrossRef
Google scholar
|
[52] |
Zhu Q, Li S, Hu K,
CrossRef
Google scholar
|
[53] |
Wang P, Liu X, Wang H,
CrossRef
Google scholar
|
[54] |
Yang J G, Fang H Y, Wan X . Effects of Al2O3-particulate-contained composite filler materials on the shear strength of alumina joints.Journal of Materials Science and Technology, 2002, 18(4): 289–290
|
[55] |
Yang J G, Fang H Y, Wan X . Al2O3/Al2O3 joint brazed with Al2O3-particulate-contained composite Ag‒Cu‒Ti filler material.Journal of Materials Science and Technology, 2005, 21(5): 782–784
|
[56] |
Yang M, Lin T, He P . Microstructure evolution of Al2O3/Al2O3 joint brazed with Ag–Cu–Ti + B + TiH2 composite filler.Ceramics International, 2012, 38(1): 289–294
CrossRef
Google scholar
|
[57] |
Yang M X, Lin T S, He P,
CrossRef
Google scholar
|
[58] |
Niu G B, Wang D P, Yang Z W,
CrossRef
Google scholar
|
[59] |
He Y M, Zhang J, Liu C F,
CrossRef
Google scholar
|
[60] |
He Y, Sun Y, Zhang J,
CrossRef
Google scholar
|
[61] |
Song X G, Cao J, Wang Y F,
CrossRef
Google scholar
|
[62] |
Zhao Y X, Wang M R, Cao J,
CrossRef
Google scholar
|
[63] |
Xiong J H, Huang J H, Lin G B,
CrossRef
Google scholar
|
[64] |
Liu Y, Qi Q, Zhu Y,
CrossRef
Google scholar
|
[65] |
Dai X, Cao J, Tian Y,
CrossRef
Google scholar
|
[66] |
Dai X, Cao J, Chen Z,
CrossRef
Google scholar
|
[67] |
Ma Q, Pu J, Li S G,
CrossRef
Google scholar
|
[68] |
Yang J, Zhang X, Ma G,
CrossRef
Google scholar
|
[69] |
Simhan D R, Ghosh A . High vacuum active brazing of cBN with improved composite filler: microstructure, interfaces and performance evaluation.Vacuum, 2021, 183: 109803
CrossRef
Google scholar
|
[70] |
Qin Y, Yu Z . Joining of C/C composite to TC4 using SiC particle-reinforced brazing alloy.Materials Characterization, 2010, 61(6): 635–639
CrossRef
Google scholar
|
[71] |
Yang Z W, Zhang L X, Ren W,
CrossRef
Google scholar
|
[72] |
Wang Y, Yang Z W, Zhang L X,
CrossRef
Google scholar
|
[73] |
Yang Z W, Wang C L, Wang Y,
CrossRef
Google scholar
|
[74] |
Mukhopadhyay P, Ghosh A . High vacuum brazing of synthetic diamond grits with steel using micro/nano Al2O3 reinforced Ag‒Cu‒Ti alloy.Journal of Materials Processing Technology, 2019, 266: 198–207
CrossRef
Google scholar
|
[75] |
Lv J, Huang Y, Fu R,
CrossRef
Google scholar
|
[76] |
Wang T, Zhang J, Liu C,
CrossRef
Google scholar
|
[77] |
Wang T, Liu C, Leinenbach C,
CrossRef
Google scholar
|
[78] |
Wang T, Ivas T, Lee W,
CrossRef
Google scholar
|
[79] |
Wang T, Zhang J, Lee W,
CrossRef
Google scholar
|
[80] |
Ding W, Xu J, Chen Z,
CrossRef
Google scholar
|
[81] |
Ding W F, Xu J H, Chen Z Z,
CrossRef
Google scholar
|
[82] |
Miao Q, Ding W, Zhu Y,
CrossRef
Google scholar
|
[83] |
Zhang L X, Sun Z, Chang Q,
CrossRef
Google scholar
|
[84] |
Sharma A, Ahn B . Brazeability, microstructure, and joint characteristics of ZrO2/Ti‒6Al‒4V brazed by Ag‒Cu‒Ti filler reinforced with cerium oxide nanoparticles.Advances in Materials Science and Engineering, 2019, 2019: 1–11
CrossRef
Google scholar
|
[85] |
Mukhopadhyay P, Ghosh A . The making and performance of patterned-monolayer brazed diamond wheel produced with Ag-based novel active filler.Journal of Manufacturing Processes, 2022, 73: 220–234
CrossRef
Google scholar
|
[86] |
Su C Y, Zhuang X Z Y, Pan C T . Al2O3/SUS304 brazing via AgCuTi‒W composite as active filler.Journal of Materials Engineering and Performance, 2014, 23(3): 906–911
CrossRef
Google scholar
|
[87] |
Wang Y, Zhao Y T, Yang Z W,
CrossRef
Google scholar
|
[88] |
Zhang J, He Y M . Effect of Ti content on microstructure and mechanical properties of Si3N4/Si3N4 joints brazed with Ag‒Cu‒Ti + Mo composite filler.Materials Science Forum, 2010, 654–656: 2018–2021
CrossRef
Google scholar
|
[89] |
He Y M, Zhang J, Wang X,
CrossRef
Google scholar
|
[90] |
He Y, Sun Y, Zhang J,
CrossRef
Google scholar
|
[91] |
He Y M, Zhang J, Sun Y,
CrossRef
Google scholar
|
[92] |
Lin G B, Huang J H, Zhang H,
CrossRef
Google scholar
|
[93] |
Wang N, Wang D P, Yang Z W,
CrossRef
Google scholar
|
[94] |
Wang N, Wang D P, Yang Z W,
CrossRef
Google scholar
|
[95] |
He H, Du X, Huang X,
CrossRef
Google scholar
|
[96] |
Wang Y, Jin C, Yang Z,
CrossRef
Google scholar
|
[97] |
Zhao Y, Wang Y, Yang Z,
CrossRef
Google scholar
|
[98] |
Fan B, Xu J, Lei H,
CrossRef
Google scholar
|
[99] |
Jin B, Huang X, Zou M,
CrossRef
Google scholar
|
[100] |
Chang H, Park S W, Choi S C,
CrossRef
Google scholar
|
[101] |
Liu J Y, Zhang J, Liu C F,
CrossRef
Google scholar
|
[102] |
Zhang J, Liu J Y, Wang T P . Microstructure and brazing mechanism of porous Si3N4/Invar joint brazed with Ag‒Cu‒Ti/Cu/Ag‒Cu multi-layered filler.Journal of Materials Science and Technology, 2018, 34(4): 713–719
CrossRef
Google scholar
|
[103] |
Guo W, Zhang H, Ma K,
CrossRef
Google scholar
|
[104] |
Wang G, Cai Y, Wang W,
CrossRef
Google scholar
|
[105] |
Wang G, Cai Y, Xu Q,
CrossRef
Google scholar
|
[106] |
Chen H, Nai X, Zhao S,
CrossRef
Google scholar
|
[107] |
Zhang Y, Guo X, Guo W,
CrossRef
Google scholar
|
[108] |
Yang Z W, Zhang L X, Chen Y C,
CrossRef
Google scholar
|
[109] |
Lin J H, Luo D L, Chen S L,
CrossRef
Google scholar
|
[110] |
Sun Z, Zhang L X, Chang Q,
CrossRef
Google scholar
|
[111] |
Pan R, Kovacevic S, Lin T,
CrossRef
Google scholar
|
[112] |
Zhu M G, Chung D D L . Active brazing alloy containing carbon-fibers for metal‒ceramic joining.Journal of the American Ceramic Society, 1994, 77(10): 2712–2720
CrossRef
Google scholar
|
[113] |
Yang Z W, Yang J H, Han Y J,
CrossRef
Google scholar
|
[114] |
Lin G, Huang J, Zhang H . Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag–Cu–Ti short carbon fibers.Journal of Materials Processing Technology, 2007, 189(1–3): 256–261
CrossRef
Google scholar
|
[115] |
Song Y, Liu D, Hu S,
CrossRef
Google scholar
|
[116] |
Song Y, Liu D, Hu S,
CrossRef
Google scholar
|
[117] |
Wang P, Xu Z, Liu X,
CrossRef
Google scholar
|
[118] |
Wang P, Liu X, Wang H,
CrossRef
Google scholar
|
[119] |
Karadeniz Z H, Kumlutas D . A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials.Composite Structures, 2007, 78(1): 1–10
CrossRef
Google scholar
|
[120] |
Ding W F, Xu J H, Chen Z Z,
CrossRef
Google scholar
|
[121] |
Ding W, Xu J, Chen Z,
CrossRef
Google scholar
|
[122] |
Guo S, Sun L, Zheng Z,
CrossRef
Google scholar
|
[123] |
Wang P, Lin J, Xu Z,
CrossRef
Google scholar
|
/
〈 | 〉 |