Advanced flexible humidity sensors: structures, techniques, mechanisms and performances
Yuzhe Zhang, Yuxi Liu, Lifei Lin, Man Zhou, Wang Zhang, Liwei Lin, Zhongyu Li, Yuanzhe Piao, Sun Ha Paek
Advanced flexible humidity sensors: structures, techniques, mechanisms and performances
Flexible humidity sensors are widely used in many fields, such as environmental monitoring, agricultural soil moisture content determination, food quality monitoring and healthcare services. Therefore, it is essential to measure humidity accurately and reliably in different conditions. Flexible materials have been the focusing substrates of humidity sensors because of their rich surface chemical properties and structural designability. In addition, flexible materials have superior ductility for different conditions. In this review, we have summarized several sensing mechanisms, processing techniques, sensing layers and substrates for specific humidity sensing requirements. Aadditionally, we have sorted out some cases of flexible humidity sensors based on different functional materials. We hope this paper can contribute to the development of flexible humidity sensors in the future.
flexible composite / manufacturing technology / sensing mechanism / humidity sensor
[1] |
Deng W H, Li Q H, Chen J,
CrossRef
Google scholar
|
[2] |
Zhu Y, Dong X, Cheng J,
CrossRef
Google scholar
|
[3] |
Fang H, Yao D, Gao X,
CrossRef
Google scholar
|
[4] |
Zhang D, Wang M, Zhang W,
CrossRef
Google scholar
|
[5] |
Chen L, Xu Y, Liu Y,
CrossRef
Google scholar
|
[6] |
Chen X, Ma K, Ou J,
CrossRef
Google scholar
|
[7] |
Cheng T, Zhang Y Z, Wang S,
CrossRef
Google scholar
|
[8] |
Xu Z, Zhang D, Liu X,
CrossRef
Google scholar
|
[9] |
Zeng S, Pan Q, Huang Z,
CrossRef
Google scholar
|
[10] |
Guan X, Yu Y, Hou Z,
CrossRef
Google scholar
|
[11] |
Guo P, Tian B, Liang J,
CrossRef
Google scholar
|
[12] |
Sun Y, Gao X, A S,
CrossRef
Google scholar
|
[13] |
Zhang W, Piao S, Lin L,
CrossRef
Google scholar
|
[14] |
Liu Z, Qi D, Leow W R,
CrossRef
Google scholar
|
[15] |
Xie B, You H, Qian H,
CrossRef
Google scholar
|
[16] |
Xu K, Fujita Y, Lu Y,
CrossRef
Google scholar
|
[17] |
Li G, Wen D . Sensing nanomaterials of wearable glucose sensors.Chinese Chemical Letters, 2021, 32(1): 221–228
CrossRef
Google scholar
|
[18] |
Jiang Y F, Guo C Y, Zhang X F,
CrossRef
Google scholar
|
[19] |
Lin L, Choi Y, Chen T,
CrossRef
Google scholar
|
[20] |
Soomro R A, Jawaid S, Zhu Q,
CrossRef
Google scholar
|
[21] |
Wan Y, Zhang S, Zhao C,
CrossRef
Google scholar
|
[22] |
Zhu Y, Zhang W, Xu J . Preparation of functional ordered mesoporous carbons and their application as the QCM sensor with ultra-low humidity.Chinese Chemical Letters, 2020, 31(8): 2150–2154
CrossRef
Google scholar
|
[23] |
Wang J, Lin Q, Zhou R,
CrossRef
Google scholar
|
[24] |
Raj A M E S, Mallika C, Swaminathan K,
CrossRef
Google scholar
|
[25] |
Zhang Y, Yu K, Jiang D,
CrossRef
Google scholar
|
[26] |
Wu R J, Sun Y L, Lin C C,
CrossRef
Google scholar
|
[27] |
Su P G, Wang C S . In situ synthesized composite thin films of MWCNTs/PMMA doped with KOH as a resistive humidity sensor.Sensors and Actuators B: Chemical, 2007, 124(2): 303–308
CrossRef
Google scholar
|
[28] |
Su P G, Wang C P . Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly-[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials.Sensors and Actuators B: Chemical, 2008, 129(2): 538–543
CrossRef
Google scholar
|
[29] |
Song X, Qi Q, Zhang T,
CrossRef
Google scholar
|
[30] |
Mahadeva S K, Yun S, Kim J . Flexible humidity and temperature sensor based on cellulose‒polypyrrole nanocomposite.Sensors and Actuators A: Physical, 2011, 165(2): 194–199
CrossRef
Google scholar
|
[31] |
Buvailo A I, Xing Y, Hines J,
CrossRef
Google scholar
|
[32] |
Li Y, Deng C, Yang M . A novel surface acoustic wave-impedance humidity sensor based on the composite of polyaniline and poly(vinyl alcohol) with a capability of detecting low humidity.Sensors and Actuators B: Chemical, 2012, 165(1): 7–12
CrossRef
Google scholar
|
[33] |
Taccola S, Greco F, Zucca A,
CrossRef
Google scholar
|
[34] |
Li H, Liu B, Cai D,
CrossRef
Google scholar
|
[35] |
Su P G, Shiu W L, Tsai M S . Flexible humidity sensor based on Au nanoparticles/graphene oxide/thiolated silica sol‒gel film.Sensors and Actuators B: Chemical, 2015, 216: 467–475
CrossRef
Google scholar
|
[36] |
Ali S, Hassan A, Hassan G,
CrossRef
Google scholar
|
[37] |
Lu T, Pan H, Ma J,
CrossRef
Google scholar
|
[38] |
Park S Y, Kim Y H, Lee S Y,
CrossRef
Google scholar
|
[39] |
Li N, Jiang Y, Zhou C,
CrossRef
Google scholar
|
[40] |
Wu J, Yin C, Zhou J,
CrossRef
Google scholar
|
[41] |
Gong L, Wang X, Zhang D,
CrossRef
Google scholar
|
[42] |
Tachibana S, Wang Y F, Sekine T,
CrossRef
Google scholar
|
[43] |
Yuan Y, Peng B, Chi H,
CrossRef
Google scholar
|
[44] |
Adepu V, Bokka N, Mattela V,
CrossRef
Google scholar
|
[45] |
Jeong W, Song J, Bae J,
CrossRef
Google scholar
|
[46] |
Tripathy A, Sharma P, Sahoo N,
CrossRef
Google scholar
|
[47] |
Liu H, Zheng H, Xiang H,
CrossRef
Google scholar
|
[48] |
Turkani V S, Maddipatla D, Narakathu B B,
CrossRef
Google scholar
|
[49] |
Du Z, Yu X, Han Y . Inkjet printing of viscoelastic polymer inks.Chinese Chemical Letters, 2018, 29(3): 399–404
CrossRef
Google scholar
|
[50] |
Luo X . Application of inkjet-printing technology in developing indicators/sensors for intelligent packaging systems.Current Opinion in Food Science, 2022, 46: 100868
CrossRef
Google scholar
|
[51] |
Li N, Jiang Y, Xiao Y,
CrossRef
Google scholar
|
[52] |
Aziz S, Bum K G, Yang Y J,
CrossRef
Google scholar
|
[53] |
Zhang R, Peng B, Yuan Y . Flexible printed humidity sensor based on poly(3,4-ethylenedioxythiophene)/reduced graphene oxide/Au nanoparticles with high performance.Composites Science and Technology, 2018, 168: 118–125
CrossRef
Google scholar
|
[54] |
de Aguiar M F, Leal A N R, de Melo C P,
CrossRef
Google scholar
|
[55] |
Cheng Y, Wang H, Li L,
CrossRef
Google scholar
|
[56] |
Tseng S F, Tsai Y S . Highly sensitive humidity sensors based on Li–C3N4 composites on porous graphene flexible electrodes.Applied Surface Science, 2022, 606: 155001
CrossRef
Google scholar
|
[57] |
Yuan M, Luo F, Wang Z,
CrossRef
Google scholar
|
[58] |
Zhang X, Maddipatla D, Bose A K,
CrossRef
Google scholar
|
[59] |
Tripathy A, Sharma P, Pramanik S,
CrossRef
Google scholar
|
[60] |
Han M, Ding X, Duan H,
CrossRef
Google scholar
|
[61] |
Liu H, Xiang H, Wang Y,
CrossRef
Google scholar
|
[62] |
Zhang H, Chen X, Zhang Z,
CrossRef
Google scholar
|
[63] |
Nitta R, Lin H E, Kubota Y,
CrossRef
Google scholar
|
[64] |
Wang D, Zhang D, Li P,
CrossRef
Google scholar
|
[65] |
Altenberend U, Molina-Lopez F, Oprea A,
CrossRef
Google scholar
|
[66] |
Ni L, Li X, Cai F,
CrossRef
Google scholar
|
[67] |
Zhang D Z, Xu Z Y, Yang Z M,
CrossRef
Google scholar
|
[68] |
Niu H, Yue W, Li Y,
CrossRef
Google scholar
|
[69] |
Qin J, Yang X, Shen C,
CrossRef
Google scholar
|
[70] |
Lu Y, Wang M Y, Wang D Y,
CrossRef
Google scholar
|
[71] |
Pan T, Yu Z, Huang F,
CrossRef
Google scholar
|
[72] |
Guo C, Xin Y, Liu Y,
CrossRef
Google scholar
|
[73] |
Khan S A, Saqib M, Rehman M M,
CrossRef
Google scholar
|
[74] |
Wang Y, Hou S, Li T,
CrossRef
Google scholar
|
[75] |
Khan S A, Saqib M, Khan M,
CrossRef
Google scholar
|
[76] |
Shen D, Liu Y, Yu M,
CrossRef
Google scholar
|
[77] |
Hsiao F R, Liao Y C . Printed micro-sensors for simultaneous temperature and humidity detection.IEEE Sensors Journal, 2018, 18(16): 6788–6793
CrossRef
Google scholar
|
[78] |
Zhao J, Li L, Zhang Y,
CrossRef
Google scholar
|
[79] |
Wei Z, Huang J, Chen W,
CrossRef
Google scholar
|
[80] |
He H, Yao Y, Liu T . Flexible humidity sensor based on crosslinked polyethyleneimine/tannic acid and porous carbonaceous interdigitated electrode.Sensors and Actuators B: Chemical, 2023, 393: 134194
CrossRef
Google scholar
|
[81] |
Chani M T S . Fabrication and characterization of chitosan–CeO2–CdO nanocomposite based impedimetric humidity sensors.International Journal of Biological Macromolecules, 2022, 194: 377–383
CrossRef
Google scholar
|
[82] |
Wang Y, Zhang L, Zhang Z,
CrossRef
Google scholar
|
[83] |
Kan Y, Wang S, Meng J,
CrossRef
Google scholar
|
[84] |
Ni X, Luo J, Liu R,
CrossRef
Google scholar
|
[85] |
Yadav B C, Sikarwar S, Yadav R,
CrossRef
Google scholar
|
[86] |
Shaukat R A, Khan M U, Saqib Q M,
CrossRef
Google scholar
|
[87] |
Ganbold E, Kim E S, Li Y,
CrossRef
Google scholar
|
[88] |
Han S, Kim W, Lee H J,
CrossRef
Google scholar
|
[89] |
Luo Y, Pei Y, Feng X,
CrossRef
Google scholar
|
[90] |
Park H, Lee S, Jeong S,
CrossRef
Google scholar
|
[91] |
Duan Z, Yuan Z, Jiang Y,
CrossRef
Google scholar
|
[92] |
Lin L, Wang L, Li B,
CrossRef
Google scholar
|
[93] |
Li C, Zhang Y, Yang S,
CrossRef
Google scholar
|
[94] |
Peng X, Chu J, Aldalbahi A,
CrossRef
Google scholar
|
[95] |
Jin X F, Liu C R L, Chen L,
CrossRef
Google scholar
|
[96] |
Ahmed H, Abduljalil H M, Hashim A . Structural, optical and electronic properties of novel (PVA–MgO)/SiC nanocomposites films for humidity sensors.Transactions on Electrical and Electronic Materials, 2019, 20(3): 218–232
CrossRef
Google scholar
|
[97] |
Angadi V J, Chethan B, Pattar V,
CrossRef
Google scholar
|
[98] |
Lei D, Zhang Q, Liu N,
CrossRef
Google scholar
|
[99] |
Zhang D, Zong X, Wu Z . Fabrication of tin disulfide/graphene oxide nanoflower on flexible substrate for ultrasensitive humidity sensing with ultralow hysteresis and good reversibility.Sensors and Actuators B: Chemical, 2019, 287: 398–407
CrossRef
Google scholar
|
[100] |
Shooshtari L, Rafiefard N, Barzegar M,
CrossRef
Google scholar
|
[101] |
Zhang D, Chang H, Li P,
CrossRef
Google scholar
|
[102] |
Ragazzini I, Castagnoli R, Gualandi I,
CrossRef
Google scholar
|
[103] |
Ahmed H, Abduljalil H M, Hashim A . Analysis of structural, optical and electronic properties of polymeric nanocomposites/silicon carbide for humidity sensors.Transactions on Electrical and Electronic Materials, 2019, 20(3): 206–217
CrossRef
Google scholar
|
[104] |
Zhang L, Tan Q, Wang Y,
CrossRef
Google scholar
|
[105] |
Karunarathne T S E F, Wijesinghe W P S L, Rathuwadu N P W,
CrossRef
Google scholar
|
[106] |
Zhang J, Dichiara A B, Novosselov I,
CrossRef
Google scholar
|
[107] |
Kafy A, Akther A, Shishir M I R,
CrossRef
Google scholar
|
[108] |
Songkeaw P, Onlaor K, Thiwawong T,
CrossRef
Google scholar
|
[109] |
Chen M, Wang Z, Li K,
CrossRef
Google scholar
|
[110] |
Zhang D, Mao R, Song X,
CrossRef
Google scholar
|
[111] |
Rianjanu A, Julian T, Hidayat S N,
CrossRef
Google scholar
|
[112] |
Liu X, Zhang D, Wang D,
CrossRef
Google scholar
|
[113] |
Lv S, Shuai L, Ding W,
CrossRef
Google scholar
|
[114] |
Agmon N . The Grotthuss mechanism.Chemical Physics Letters, 1995, 244(5–6): 456–462
CrossRef
Google scholar
|
[115] |
Kuzubasoglu B A . Recent studies on the humidity sensor: a mini review.ACS Applied Electronic Materials, 2022, 4(10): 4797–4807
CrossRef
Google scholar
|
[116] |
Li J, Wu H, Cao L,
CrossRef
Google scholar
|
[117] |
Wu J, Ma X, Li C,
CrossRef
Google scholar
|
[118] |
Jiang W, Zhang F, Lin Q . Flexible relative humidity sensor based on reduced graphene oxide and interdigital electrode for smart home.Micro & Nano Letters, 2022, 17(6): 134–138
CrossRef
Google scholar
|
[119] |
Liang Y, Ding Q, Wang H,
CrossRef
Google scholar
|
/
〈 | 〉 |