Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries

Chong Xu , Guang Ma , Wang Yang , Sai Che , Neng Chen , Ni Wu , Bo Jiang , Ye Wang , Yankun Sun , Sijia Liao , Jiahao Yang , Xiang Li , Guoyong Huang , Yongfeng Li

Front. Mater. Sci. ›› 2023, Vol. 17 ›› Issue (3) : 230651

PDF (7842KB)
Front. Mater. Sci. ›› 2023, Vol. 17 ›› Issue (3) : 230651 DOI: 10.1007/s11706-023-0651-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries

Author information +
History +
PDF (7842KB)

Abstract

Sn-based materials are considered as a kind of potential anode materials for lithium-ion batteries (LIBs) owing to their high theoretical capacity. However, their use is limited by large volume expansion deriving from the lithiation/delithiation process. In this work, amorphous Sn modified nitrogen-doped porous carbon nanosheets (ASn-NPCNs) are obtained. The synergistic effect of amorphous Sn and high edge-nitrogen-doped level porous carbon nanosheets provides ASn-NPCNs with multiple advantages containing abundant defect sites, high specific surface area (214.9 m2·g−1), and rich hierarchical pores, which can promote the lithium-ion storage. Serving as the LIB anode, the as-prepared ASn-NPCNs-750 electrode exhibits an ultrahigh capacity of 1643 mAh·g−1 at 0.1 A·g−1, ultrafast rate performance of 490 mAh·g−1 at 10 A·g−1, and superior long-term cycling performance of 988 mAh·g−1 at 1 A·g−1 after 2000 cycles with a capacity retention of 98.9%. Furthermore, the in-depth electrochemical kinetic test confirms that the ultrahigh-capacity and fast-charging performance of the ASn-NPCNs-750 electrode is ascribed to the rapid capacitive mechanism. These impressive results indicate that ASn-NPCNs-750 can be a potential anode material for high-capacity and fast-charging LIBs.

Graphical abstract

Keywords

amorphous Sn / rapid capacitive mechanism / lithium-ion storage / nitrogen-doped carbon / fast charging

Cite this article

Download citation ▾
Chong Xu, Guang Ma, Wang Yang, Sai Che, Neng Chen, Ni Wu, Bo Jiang, Ye Wang, Yankun Sun, Sijia Liao, Jiahao Yang, Xiang Li, Guoyong Huang, Yongfeng Li. Amorphous Sn modified nitrogen-doped porous carbon nanosheets with rapid capacitive mechanism for high-capacity and fast-charging lithium-ion batteries. Front. Mater. Sci., 2023, 17(3): 230651 DOI:10.1007/s11706-023-0651-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xiao J, Li Q, Bi Y, . Understanding and applying coulombic efficiency in lithium metal batteries.Nature Energy, 2020, 5(8): 561–568

[2]

Chae S, Ko M, Kim K, . Confronting issues of the practical implementation of Si Anode in high-energy lithium-ion batteries.Joule, 2017, 1(1): 47–60

[3]

Zhou J, Jiang Z, Niu S, . Self-standing hierarchical P/CNTs@rGO with unprecedented capacity and stability for lithium and sodium storage.Chem, 2018, 4(2): 372–385

[4]

Liang L, Sun X, Zhang J, . In situ synthesis of hierarchical core double-shell Ti-doped LiMnPO4@NaTi2(PO4)3@C/3D graphene cathode with high-rate capability and long cycle life for lithium-ion batteries.Advanced Energy Materials, 2019, 9: 1–15

[5]

Xu Z, Zeng Y, Wang L, . Nanoconfined phosphorus film coating on interconnected carbon nanotubes as ultrastable anodes for lithium ion batteries.Journal of Power Sources, 2017, 356: 18–26

[6]

Xia Y, Han S, Zhu Y, . Stable cycling of mesoporous Sn4P3/SnO2@C nanosphere anode with high initial coulombic efficiency for Li-ion batteries.Energy Storage Materials, 2019, 18: 125–132

[7]

Subramaniyam C, Tai Z, Mahmood N, . Unlocking the potential of amorphous red phosphorus films as a long-term stable negative electrode for lithium batteries.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(5): 1925–1929

[8]

Zhang X, Cheng X, Zhang Q . Nanostructured energy materials for electrochemical energy conversion and storage: a review.Journal of Energy Chemistry, 2016, 25(6): 967–984

[9]

Zhou X, Liu Q, Jiang C, . Strategies towards low-cost dual-ion batteries with high performance.Angewandte Chemie International Edition, 2020, 59(10): 3802–3832

[10]

Sun Y, Liu N, Cui Y . Promises and challenges of nanomaterials for lithium-based rechargeable batteries.Nature Energy, 2016, 1: 16071

[11]

Deng J, Yu X, Qin X, . Carbon sphere-templated synthesis of porous yolk–shell ZnCo2O4 spheres for high-performance lithium storage.Journal of Alloys and Compounds, 2019, 780: 65–71

[12]

Niu F, Shao Z, Gao H, . Si-doped graphene nanosheets for NOx gas sensing.Sensors and Actuators B: Chemical, 2021, 328: 129005

[13]

Li X, Chen G, Le Z, . Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage.Nano Energy, 2019, 59: 464–471

[14]

Sun Y, Wang L, Li Y, . Design of red phosphorus nanostructured electrode for fast-charging lithium-ion batteries with high energy density.JOULE, 2019, 3(4): 1080–1093

[15]

Wang Y, Tian L, Yao Z, . Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries.Electrochimica Acta, 2015, 163: 71–76

[16]

Huang B, Pan Z, Su X, . Tin-based materials as versatile anodes for alkali (earth)-ion batteries.Journal of Power Sources, 2018, 395: 41–59

[17]

Shin J H, Song J Y . Electrochemical properties of Sn-decorated SnO nanobranches as an anode of Li-ion battery.Nano Convergence, 2016, 3(1): 9

[18]

Wang J, Li W, Wang F, . Controllable synthesis of SnO2@C yolk–shell nanospheres as a high-performance anode material for lithium ion batteries.Nanoscale, 2014, 6(6): 3217–3222

[19]

Yang L, Dai T, Wang Y, . Chestnut-like SnO2/C nanocomposites with enhanced lithium ion storage properties.Nano Energy, 2016, 30: 885–891

[20]

Park J W, Park C M . Electrochemical Li topotactic reaction in layered SnP3 for superior Li-ion batteries.Scientific Reports, 2016, 6(1): 35980

[21]

Miao C, Liu M, He Y, . Monodispersed SnO2 nanospheres embedded in framework of graphene and porous carbon as anode for lithium ion batteries.Energy Storage Materials, 2016, 3: 98–105

[22]

Zhang B, Huang J, Kim J . Ultrafine amorphous SnOx embedded in carbon nanofiber/carbon nanotube composites for Li-ion and Na-ion batteries.Advanced Functional Materials, 2015, 25(32): 5222–5228

[23]

Yi Z, Tian X, Han Q, . Synthesis of polygonal Co3Sn2 nanostructure with enhanced magnetic properties.RSC Advances, 2016, 6(46): 39818–39822

[24]

Kim M G, Sim S, Cho J . Novel core–shell Sn–Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction.Advanced Materials, 2010, 22(45): 5154–5158

[25]

Yi Z, Tian X, Han Q, . One-step synthesis of Ni3Sn2@reduced graphene oxide composite with enhanced electrochemical lithium storage properties.Electrochimica Acta, 2016, 192: 188–195

[26]

Ding Y L, Wen Y, van Aken P A, . Large-scale low temperature fabrication of SnO2 hollow/nanoporous nanostructures: the template-engaged replacement reaction mechanism and high-rate lithium storage.Nanoscale, 2014, 6(19): 11411–11418

[27]

Xu L, Kim C, Shukla A K, . Monodisperse Sn nanocrystals as a platform for the study of mechanical damage during electrochemical reactions with Li.Nano Letters, 2013, 13(4): 1800–1805

[28]

Zhu C, Xia X, Liu J, . TiO2 nanotube@SnO2 nanoflake core–branch arrays for lithium-ion battery anode.Nano Energy, 2014, 4: 105–112

[29]

Duan Y, Du S, Tao H, . Sn@C composite for lithium ion batteries: amorphous vs.crystalline structures. Ionics, 2021, 27(4): 1403–1412

[30]

Xu Y, Liu Q, Zhu Y, . Uniform nano-Sn/C composite anodes for lithium ion batteries.Nano Letters, 2013, 13(2): 470–474

[31]

Nam D, Kim J, Lee J, . Tunable Sn structures in porosity-controlled carbon nanofibers for all-solid-state lithium-ion battery anodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(20): 11021–11030

[32]

Sun L, Wang X, Susantyoko R, . High performance binder-free Sn coated carbon nanotube array anode.Carbon, 2015, 82: 282–287

[33]

Luo B, Qiu T, Ye D, . Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage.Nano Energy, 2016, 22: 232–240

[34]

Ma G, Yang W, Xu C, . Nitrogen-doped porous carbon embedded Sn/SnO nanoparticles as high-performance lithium-ion battery anode.Electrochimica Acta, 2022, 428: 140898

[35]

Zhu Z, Wang S, Du J, . Ultrasmall Sn nanoparticles embedded in nitrogen-doped porous carbon as high-performance anode for lithium-ion batteries.Nano Letters, 2014, 14(1): 153–157

[36]

Kang S, Li X, Yin C, . Three-dimensional mesoporous sandwich-like g-C3N4-interconnected CuCo2O4 nanowires arrays as ultrastable anode for fast lithium storage.Journal of Colloid and Interface Science, 2019, 554: 269–277

[37]

Zuo Y, Xu X, Zhang C, . SnS2/g-C3N4/graphite nanocomposites as durable lithium-ion battery anode with high pseudocapacitance contribution.Electrochimica Acta, 2020, 349: 136369

[38]

Adekoya D, Li M, Hankel M, . Design of a 1D/2D C3N4/rGO composite as an anode material for stable and effective potassium storage.Energy Storage Materials, 2020, 25: 495–501

[39]

Zou W, Deng B, Hu X, . Crystal-plane-dependent metal oxide-support interaction in CeO2/g-C3N4 for photocatalytic hydrogen evolution.Applied Catalysis B: Environmental, 2018, 238: 111–118

[40]

Jin H, Liu X, Jiao Y, . Constructing tunable dual active sites on two-dimensional C3N4@MoN hybrid for electrocatalytic hydrogen evolution.Nano Energy, 2018, 53: 690–697

[41]

Kennedy R, Marr K, Ezekoye O . Gas release rates and properties from lithium cobalt oxide lithium ion battery arrays.Journal of Power Sources, 2021, 487: 229388

[42]

Zeng G, Deng Y, Yu X, . Ultrathin g-C3N4 as a hole extraction layer to boost sunlight-driven water oxidation of BiVO4-based photoanode.Journal of Power Sources, 2021, 494: 229701

[43]

Zhao W, Wang J, Yin R, . Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries.Journal of Colloid and Interface Science, 2020, 564: 28–36

[44]

Vinoth S, Subramani K, Ong W J, . CoS2 engulfed ultra-thin S-doped g-C3N4 and its enhanced electrochemical performance in hybrid asymmetric supercapacitor.Journal of Colloid and Interface Science, 2021, 584: 204–215

[45]

Wang S, Shi Y, Fan C, . Layered g-C3N4@reduced graphene oxide composites as anodes with improved rate performance for lithium-ion batteries.ACS Applied Materials & Interfaces, 2018, 10(36): 30330–30336

[46]

Hou Y, Li J, Wen Z, . N-doped graphene/porous g-C3N4 nanosheets supported layered-MoS2 hybrid as robust anode materials for lithium-ion batteries.Nano Energy, 2014, 8: 157–164

[47]

Zhang B, Yu Y, Huang Z, . Exceptional electrochemical performance of freestanding electrospun carbon nanofiber anodes containing ultrafine SnOx particles.Energy & Environmental Science, 2012, 5(12): 9895–9902

[48]

Hu H, Li Q, Li L, . Laser irradiation of electrode materials for energy storage and conversion.Matter, 2020, 3(1): 95–126

[49]

Xu C, Yang W, Ma G, . Edge-nitrogen enriched porous carbon nanosheets anodes with enlarged interlayer distance for fast charging sodium-ion batteries.Small, 2022, 18(48): 2204375

[50]

Li Y, Yang W, Tu Z, . Water-soluble salt-templated strategy to regulate mesoporous nanosheets-on-network structure with active mixed-phase CoO/Co3O4 nanosheets on graphene for superior lithium storage.Journal of Alloys and Compounds, 2021, 857: 157626

[51]

Qin J, He C, Zhao N, . Graphene networks anchored with sn@graphene as lithium ion battery anode.ACS Nano, 2014, 8(2): 1728–1738

[52]

Yang T, Zhong J, Liu J, . A general strategy for antimony-based alloy nanocomposite embedded in Swiss-cheese-like nitrogen-doped porous carbon for energy storage.Advanced Functional Materials, 2021, 31(13): 2009433

[53]

Liu J, Zhang Y, Zhang L, . Graphitic carbon nitride (g-C3N4)-derived N-rich graphene with tuneable interlayer distance as a high-rate anode for sodium-ion batteries.Advanced Materials, 2019, 31(24): 1901261

[54]

Zhang W, Yin J, Sun M, . Direct pyrolysis of supermolecules: an ultrahigh edge-nitrogen doping strategy of carbon anodes for potassium-ion batteries.Advanced Materials, 2020, 32(25): 2000732

[55]

Qin D, Wang L, Zeng X, . Tailored edge-heteroatom tri-doping strategy of turbostratic carbon anodes for high-rate performance lithium and sodium-ion batteries.Energy Storage Materials, 2023, 54: 498–507

[56]

Tian W, Zhang H, Duan X, . Porous carbons: structure-oriented design and versatile applications.Advanced Functional Materials, 2020, 30(17): 1909265

[57]

Youn D H, Heller A, Mullins C B . Simple synthesis of nanostructured Sn/nitrogen-doped carbon composite using nitrilotriacetic acid as lithium ion battery anode.Chemistry of Materials, 2016, 28(5): 1343–1347

[58]

Cheng Y, Yi Z, Wang C, . Controllable fabrication of C/Sn and C/SnO/Sn composites as anode materials for high-performance lithium-ion batteries.Chemical Engineering Journal, 2017, 330: 1035–1043

[59]

Ying H, Zhang S, Meng Z, . Ultrasmall Sn nanodots embedded inside N-doped carbon microcages as high-performance lithium and sodium ion battery anodes.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(18): 8334–8342

[60]

Chang X, Wang T, Liu Z, . Ultrafine Sn nanocrystals in a hierarchically porous N-doped carbon for lithium ion batteries.Nano Research, 2017, 10(6): 1950–1958

[61]

Park M G, Lee D H, Jung H, . Sn-based nanocomposite for Li-ion battery anode with high energy density, rate capability, and reversibility.ACS Nano, 2018, 12(3): 2955–2967

[62]

Liu X, Li X, Yu J, . Ultrasmall Sn nanoparticles embedded in N-doped carbon nanospheres as long cycle life anode for lithium ion batteries.Materials Letters, 2018, 223: 203–206

[63]

Mo R, Tan X, Li F, . Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities.Nature Communications, 2020, 11(1): 1374

[64]

Xu C, Ma G, Yang W, . One-step reconstruction of acid treated spent graphite for high capacity and fast charging lithium-ion batteries.Electrochimica Acta, 2022, 415: 140198

[65]

Zhu L, Wang Y, Wang M, . High edge-nitrogen-doped porous carbon nanosheets with rapid pseudocapacitive mechanism for boosted potassium-ion storage.Carbon, 2022, 187: 302–309

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (7842KB)

Supplementary files

FMS-23651-OF-Xc_suppl_1

1344

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/