A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries

Hengxin Xu , Song Yang , Yufeng Chen , Junle Xiong , Shengtao Zhang , Fang Gao , Zhengyong Huang , Hongru Li

Front. Mater. Sci. ›› 2023, Vol. 17 ›› Issue (2) : 230639

PDF (5961KB)
Front. Mater. Sci. ›› 2023, Vol. 17 ›› Issue (2) : 230639 DOI: 10.1007/s11706-023-0639-7
RESEARCH ARTICLE
RESEARCH ARTICLE

A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries

Author information +
History +
PDF (5961KB)

Abstract

A hydrophilic hyperbranched polyester (poly (tetramethylol acetylenediurea (TA)-CO-succinyl chloride) (PTS)) was proposed to be used as an organic additive in aqueous ZnSO4 electrolyte to achieve a highly reversible zinc/manganese oxide battery. It is found that the zinc symmetric battery based on the 2.0 wt.% PTS/ZnSO4 electrolyte showed a long cycle stability of more than 2400 h at 1.0 mA·cm−2, which is much longer than that including the blank ZnSO4 electrolyte (140 h). Furthermore, the capacity retention of the Zn||MnO2 full cells employing the 2.0 wt.% PTS/ZnSO4 electrolyte remained 85% after 100 cycles at 0.2 A·g−1, which is much higher than 20% capacity retention of the cell containing the blank ZnSO4 electrolyte, and also greater than 59.6% capacity retention of the cell including the 10.0 wt.% TA/ZnSO4 electrolyte. By using 2.0 wt.% PTS/ZnSO4 electrolytes, the capacity retention of the Zn||MnO2 full cells even reached 65% after 2000 cycles at a higher current density of 1.0 A·g−1. It is further demonstrated that the PTS was firmly adsorbed on the zinc anode surface to form a protective layer.

Graphical abstract

Keywords

aqueous zinc-ion battery / hydrophilic branched polyester / Zn anode protection / Zn dendrite / adsorption

Cite this article

Download citation ▾
Hengxin Xu, Song Yang, Yufeng Chen, Junle Xiong, Shengtao Zhang, Fang Gao, Zhengyong Huang, Hongru Li. A diluent protective organic additive electrolyte of hydrophilic hyperbranched polyester for long-life reversible aqueous zinc manganese oxide batteries. Front. Mater. Sci., 2023, 17(2): 230639 DOI:10.1007/s11706-023-0639-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lin L, Suo L, Hu Y, . Epitaxial induced plating current-collector lasting lifespan of anode-free lithium metal battery.Advanced Energy Materials, 2021, 11(9): 2003709

[2]

Liu Y, Tao X, Wang Y, . Self-assembled monolayers direct a LiF-rich interphase toward long-life lithium metal batteries.Science, 2022, 375(6582): 739–745

[3]

Cao P, Zhou X, Wei A, . Fast-charging and ultrahigh-capacity zinc metal anode for high-performance aqueous zinc-ion batteries.Advanced Functional Materials, 2021, 31(20): 2100398

[4]

Wu S, Zhang S, Chu Y, . Stacked lamellar matrix enabling regulated deposition and superior thermo-kinetics for advanced aqueous Zn-ion system under practical conditions.Advanced Functional Materials, 2021, 31(49): 2107397

[5]

Zhao R, Yang Y, Liu G, . Redirected Zn electrodeposition by an anti-corrosion elastic constraint for highly reversible Zn anodes.Advanced Functional Materials, 2021, 31(2): 2001867

[6]

Zeng X, Mao J, Hao J, . Electrolyte design for in situ construction of highly Zn2+-conductive solid electrolyte interphase to enable high-performance aqueous Zn-ion batteries under practical conditions.Advanced Materials, 2021, 33(11): e2007416

[7]

Jia X, Liu C, Neale Z G, . Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry.Chemical Reviews, 2020, 120(15): 7795–7866

[8]

Cao L, Li D, Soto F A, . Highly reversible aqueous zinc batteries enabled by zincophilic‒zincophobic interfacial layers and interrupted hydrogen-bond electrolytes.Angewandte Chemie International Edition in English, 2021, 60(34): 18845–18851

[9]

Yang Q, Li Q, Liu Z, . Dendrites in Zn-based batteries.Advanced Materials, 2020, 32(48): e2001854

[10]

Chao D, Zhou W, Ye C, . An electrolytic Zn‒MnO2 battery for high-voltage and scalable energy storage.Angewandte Chemie International Edition in English, 2019, 58(23): 7823–7828

[11]

Deng C, Xie X, Han J, . Stabilization of Zn metal anode through surface reconstruction of a cerium-based conversion film.Advanced Functional Materials, 2021, 31(51): 2103227

[12]

Liang P, Yi J, Liu X, . Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries.Advanced Functional Materials, 2020, 30(13): 1908528

[13]

Kim J Y, Liu G, Shim G Y, . Functionalized Zn@ZnO hexagonal pramid array for dendrite-free and ultrastable zinc metal anodes.Advanced Functional Materials, 2020, 30(36): 2004210

[14]

Liu X, Yang F, Xu W, . Zeolitic imidazolate frameworks as Zn2+ modulation layers to enable dendrite-free Zn anodes.Advanced Science, 2020, 7(21): 2002173

[15]

Wang L, Huang W, Guo W, . Sn alloying to inhibit hydrogen evolution of Zn metal anode in rechargeable aqueous batteries.Advanced Functional Materials, 2022, 32(1): 2108533

[16]

Wang S B, Ran Q, Yao R Q, . Lamella-nanostructured eutectic zinc–aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries.Nature Communications, 2020, 11(1): 1634

[17]

Jin Y, Han K S, Shao Y, . Stabilizing zinc anode reactions by polyethylene oxide polymer in mild aqueous electrolytes.Advanced Functional Materials, 2020, 30(43): 2003932

[18]

Xu Y, Zhu J, Feng J, . A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive.Energy Storage Materials, 2021, 38: 299–308

[19]

Dong H, Li J, Zhao S, . Investigation of a biomass hydrogel electrolyte naturally stabilizing cathodes for zinc-ion batteries.ACS Applied Materials & Interfaces, 2021, 13(1): 745–754

[20]

Guo X, Zhang Z, Li J, . Alleviation of dendrite formation on zinc anodes via electrolyte additives.ACS Energy Letters, 2021, 6(2): 395–403

[21]

Ding F, Xu W, Graff G L, . Dendrite-free lithium deposition via self-healing electrostatic shield mechanism.Journal of the American Chemical Society, 2013, 135(11): 4450–4456

[22]

Xu W, Zhao K, Huo W, . Diethyl ether as self-healing electrolyte additive enabled long-life rechargeable aqueous zinc ion batteries.Nano Energy, 2019, 62: 275–281

[23]

Cao L, Li D, Hu E, . Solvation structure design for aqueous Zn metal batteries.Journal of the American Chemical Society, 2020, 142(51): 21404–21409

[24]

Qiu H, Du X, Zhao J, . Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation.Nature Communications, 2019, 10(1): 5374

[25]

Naveed A, Yang H, Shao Y, . A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries.Advanced Materials, 2019, 31(36): e1900668

[26]

Zhang C, Holoubek J, Wu X, . A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode.Chemical Communications, 2018, 54(100): 14097–14099

[27]

Bayaguud A, Luo X, Fu Y, . Cationic surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries.ACS Energy Letters, 2020, 5(9): 3012–3020

[28]

Zhang Q, Luan J, Tang Y, . Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries.Angewandte Chemie International Edition in English, 2020, 59(32): 13180–13191

[29]

Zhang Q, Luan J, Fu L, . The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive.Angewandte Chemie International Edition in English, 2019, 58(44): 15841–15847

[30]

Wan F, Zhang L, Dai X, . Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers.Nature Communications, 2018, 9(1): 1656

[31]

Chen Q, Jin J, Kou Z, . Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density.Small, 2020, 16(14): e2000091

[32]

Wang R, Wang D, Nagaumi H, . Understanding the corrosion behavior by passive film evolution in Zn-containing Al‒Si‒Cu cast alloy.Corrosion Science, 2022, 205: 110468

[33]

Tan B, Zhang S, Qiang Y, . Experimental and theoretical studies on the inhibition properties of three diphenyl disulfide derivatives on copper corrosion in acid medium.Journal of Molecular Liquids, 2020, 298: 111975

[34]

Wang J, Cai Z, Xiao R, . A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries.ACS Applied Materials & Interfaces, 2020, 12(20): 23028–23034

[35]

Qiu Q, Chi X, Huang J, . Highly stable plating/stripping behavior of zinc metal anodes in aqueous zinc batteries regulated by quaternary ammonium cationic salts.ChemElectroChem, 2021, 8(5): 858–865

[36]

Zhao Z, Zhao J, Hu Z, . Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase.Energy & Environmental Science, 2019, 12(6): 1938–1949

[37]

Cai Z, Ou Y, Wang J, . Chemically resistant Cu‒Zn/Zn composite anode for long cycling aqueous batteries.Energy Storage Materials, 2020, 27: 205–211

[38]

Liu T, Hong J, Wang J, . Uniform distribution of zinc ions achieved by functional supramolecules for stable zinc metal anode with long cycling lifespan.Energy Storage Materials, 2022, 45: 1074–1083

[39]

Cao Z, Zhu X, Xu D, . Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery.Energy Storage Materials, 2021, 36: 132–138

[40]

Tang Y, Liu C, Zhu H, . Ion-confinement effect enabled by gel electrolyte for highly reversible dendrite-free zinc metal anode.Energy Storage Materials, 2020, 27: 109–116

[41]

Sun P, Ma L, Zhou W, . Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive.Angewandte Chemie International Edition in English, 2021, 60(33): 18247–18255

[42]

Zhang Q, Ma Y, Lu Y, . Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode.Angewandte Chemie International Edition in English, 2021, 60(43): 23357–23364

[43]

Yan M, Xu C, Sun Y, . Manipulating Zn anode reactions through salt anion involving hydrogen bonding network in aqueous electrolytes with PEO additive.Nano Energy, 2021, 82: 105739

[44]

Liu C, Tian Y, An Y, . Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries.Chemical Engineering Journal, 2022, 298: 132748

[45]

Chu Y, Zhang S, Wu S, . In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes.Energy & Environmental Science, 2021, 14(6): 3609–3620

[46]

Zeng Y, Zhang X, Qin R, . Dendrite-free zinc deposition induced by multifunctional CNT frameworks for stable flexible Zn-ion batteries.Advanced Materials, 2019, 31(36): e1903675

[47]

An Y, Tian Y, Liu C, . Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries.ACS Nano, 2021, 15(9): 15259–15273

[48]

Zhao X, Liang X, Li Y, . Challenges and design strategies for high performance aqueous zinc ion batteries.Energy Storage Materials, 2021, 42: 533–569

[49]

Xu C, Li B, Du H, . Energetic zinc ion chemistry: the rechargeable zinc ion battery.Angewandte Chemie International Edition in English, 2012, 51(4): 933–935

[50]

Pan H, Shao Y, Yan P, . Reversible aqueous zinc/manganese oxide energy storage from conversion reactions.Nature Energy, 2016, 1(5): 1–7

[51]

Sun W, Wang F, Hou S, . Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion.Journal of the American Chemical Society, 2017, 139(29): 9775–9778

[52]

Karami P, Khorshidi B, Shamaei L, . Nanodiamond-enabled thin-film nanocomposite polyamide membranes for high-temperature water treatment.ACS Applied Materials & Interfaces, 2020, 12(47): 53274–53285

[53]

Jia H, Qiu M, Lan C, . Advanced zinc anode with nitrogen-doping interface induced by plasma surface treatment.Advanced Science, 2022, 9(3): e2103952

[54]

Han D, Wu S, Zhang S, . A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems.Small, 2020, 16(29): e2001736

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (5961KB)

Supplementary files

FMS-23639-OF-Xhx_suppl_1

1683

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/