Double-layered TiO2 cavity/nanoparticle photoelectrodes for efficient dye-sensitized solar cells
Zhen Li , Libo Yu
Front. Mater. Sci. ›› 2023, Vol. 17 ›› Issue (1) : 230638
Double-layered TiO2 cavity/nanoparticle photoelectrodes for efficient dye-sensitized solar cells
TiO2 nanoparticles (NPs) in the size of ~25 nm, namely P25, are very common material as the electron collecting layer in dye-sensitized solar cells (DSSCs). However, the light-scattering improvement of TiO2 NP photoelectrodes is still a challenge. Here, we built TiO2 cavities on the top of the TiO2 NP layer by using carbonaceous microspheres as the template, forming the TiO2 cavity/nanoparticle (C/NP) photoelectrode for the application in DSSCs. The cavity amount in the TiO2 C/NP photoelectrode was controlled by adjusting the weight ratio of carbonaceous microspheres. SEM results confirm the successful formation of the double-layered TiO2 C/NP electrode. J‒V tests show that the optimized TiO2 C/NP electrode prepared with 25 wt.% carbonaceous microspheres contributes to remarkable improvement of the short-circuit current density (Jsc) and the power conversion efficiency (PCE). The best photovoltaic performance solar cell with the PCE of 9.08% is achieved with the optimized TiO2 C/NP photoelectrode, which is over 98% higher than that of the TiO2 NP photoelectrode. Further investigations of UV-vis DRS, IPCE, OCVD, and EIS demonstrate that the competition between light scattering effect and charges recombination in this TiO2 C/NP photoelectrode is responsible for the PCE enhancement.
titanium dioxide / dye sensitized solar cell / cavity / light scattering
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |