Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents
Yunping Qiao, Yanyang Han, Rengui Guan, Shiliang Liu, Xinling Bi, Shanshan Liu, Wei Cui, Tao Zhang, Tao He
Inorganic hollow mesoporous spheres-based delivery for antimicrobial agents
Microorganisms coexist with human beings and have formed a complex relationship with us. However, the abnormal spread of pathogens can cause infectious diseases thus demands antibacterial agents. Currently available antimicrobials, such as silver ions, antimicrobial peptides and antibiotics, have diverse concerns in chemical stability, biocompatibility, or triggering drug resistance. The “encapsulate-and-deliver” strategy can protect antimicrobials against decomposing, so to avoid large dose release induced resistance and achieve the controlled release. Considering loading capacity, engineering feasibility, and economic viability, inorganic hollow mesoporous spheres (iHMSs) represent one kind of promising and suitable candidates for real-life antimicrobial applications. Here we reviewed the recent research progress of iHMSs-based antimicrobial delivery. We summarized the synthesis of iHMSs and the drug loading method of various antimicrobials, and discussed the future applications. To prevent and mitigate the spread of an infective disease, multilateral coordination at the national level is required. Moreover, developing effective and practicable antimicrobials is the key to enhancing our capability to eliminate pathogenic microbes. We believe that our conclusion will be beneficial for researches on the antimicrobial delivery in both lab and mass production phases.
antimicrobial / inorganic hollow mesoporous sphere / encapsulate-and-deliver / drug delivery
[1] |
Gautam M, Park D H, Park S J,
|
[2] |
Zheng H, Ji Z, Roy K R,
|
[3] |
Kepiro I E, Marzuoli I, Hammond K,
|
[4] |
Imani S M, Ladouceur L, Marshall T,
|
[5] |
Bhaskar S V . Foodborne diseases — disease burden.In: Food Safety in the 21st Century. Elsevier, 2017, 1–10
|
[6] |
Wales A D, Allen V M, Davies R H . Chemical treatment of animal feed and water for the control of Salmonella.Foodborne Pathogens and Disease, 2010, 7(1): 3–15
|
[7] |
Witte W, Tschäpe H, Klare I, ,
|
[8] |
Bacanlı M, Başaran N . Importance of antibiotic residues in animal food.Food and Chemical Toxicology, 2019, 125: 462–466
|
[9] |
World Health Organization. Antimicrobial resistance. Released date: 2021–11-17
|
[10] |
Thorsteinsson T, Másson M, Kristinsson K G,
|
[11] |
Lee J, Lee D G . Antimicrobial peptides (AMPs) with dual mechanisms: membrane disruption and apoptosis.Journal of Microbiology and Biotechnology, 2015, 25(6): 759–764
|
[12] |
Matougui N, Groo A C, Umerska A,
|
[13] |
Abdelbar M F, Shams R S, Morsy O M,
|
[14] |
Mun J, Mok J W, Jeong S,
|
[15] |
Wang X J, Shu G F, Xu X L,
|
[16] |
Li Y, Shi J . Hollow-structured mesoporous materials: chemical synthesis, functionalization and applications.Advanced Materials, 2014, 26(20): 3176–3205
|
[17] |
El-Toni A M, Habila M A, Labis J P,
|
[18] |
Soares S F, Fernandes T, Daniel-da-Silva A L,
|
[19] |
Mohammadi Ziarani G, Malmir M, Lashgari N,
|
[20] |
Alipour M, Halwani M, Omri A,
|
[21] |
Afra B, Mohammadi M, Soleimani M,
|
[22] |
Niza E, Božik M, Bravo I,
|
[23] |
Stanisz M, Klapiszewski Ł, Jesionowski T . Recent advances in the fabrication and application of biopolymer-based micro- and nanostructures: a comprehensive review.Chemical Engineering Journal, 2020, 397: 125409
|
[24] |
Raemdonck K, Demeester J, De Smedt S . Advanced nanogel engineering for drug delivery.Soft Matter, 2009, 5(4): 707–715
|
[25] |
Neamtu I, Rusu A G, Diaconu A,
|
[26] |
Guo Y, Zhang Q, Zhu Q,
|
[27] |
Liu X, Wang Z, Feng X,
|
[28] |
Liu J, Wickramaratne N P, Qiao S Z,
|
[29] |
Dong Y, Liu D, Yang Z . A brief review of methods for terminal functionalization of DNA.Methods, 2014, 67(2): 116–122
|
[30] |
Li C, Faulkner-Jones A, Dun A R,
|
[31] |
Li C, Rowland M J, Shao Y,
|
[32] |
Shao Y, Jia H, Cao T,
|
[33] |
Shi J, Shi Z, Dong Y,
|
[34] |
Yuan T, Shao Y, Zhou X,
|
[35] |
Jin Y, Li Y, Song S,
|
[36] |
Li W, Zhao D . An overview of the synthesis of ordered mesoporous materials.Chemical Communications, 2013, 49(10): 943–946
|
[37] |
Zhao D, Yang N, Xu L,
|
[38] |
Li Z, Xu K, Qin L,
|
[39] |
Argyo C, Weiss V, Bräuchle C,
|
[40] |
Wagner J, Gößl D, Ustyanovska N,
|
[41] |
Soomro N A, Wu Q, Amur S A,
|
[42] |
Kwakye-Awuah B, Williams C, Kenward M A,
|
[43] |
Li X, Shi Z, Cui Z,
|
[44] |
Wang J, Wan J, Yang N,
|
[45] |
Eivazzadeh-Keihan R, Chenab K K, Taheri-Ledari R,
|
[46] |
Selvarajan V, Obuobi S, Ee P L R . Silica nanoparticles — a versatile tool for the treatment of bacterial infections.Frontiers in Chemistry, 2020, 8: 602
|
[47] |
Yanagisawa T, Shimizu T, Kuroda K,
|
[48] |
Kresge C T, Leonowicz M E, Roth W J,
|
[49] |
Jin R, Yang Y, Zou Y,
|
[50] |
Abdelaal H M, Harbrecht B . Approachable way to synthesize 3D silica hollow nanospheres with mesoporous shells via simple template-assisted technique.ChemistrySelect, 2016, 1(18): 5961–5966
|
[51] |
Sharma J, Polizos G . Hollow silica particles: recent progress and future perspectives.Nanomaterials, 2020, 10(8): 1599
|
[52] |
Kerdlap W, Thongpitak C, Keawmaungkom S,
|
[53] |
Zhao W, Lang M, Li Y,
|
[54] |
Yu Q, Wang P, Hu S,
|
[55] |
Sun Y, Mao Y, Di N,
|
[56] |
Tang S, Huang X, Chen X,
|
[57] |
Wu S H, Mou C Y, Lin H P . Synthesis of mesoporous silica nanoparticles.Chemical Society Reviews, 2013, 42(9): 3862–3875
|
[58] |
Si Y, Chen M, Wu L . Syntheses and biomedical applications of hollow micro-/nano-spheres with large-through-holes.Chemical Society Reviews, 2016, 45(3): 690–714
|
[59] |
Cao Y, Xing Z, Hu M,
|
[60] |
Zhao T, Elzatahry A, Li X,
|
[61] |
Wang Z, Qi J, Yang N,
|
[62] |
Sun L, Lv H, Feng J,
|
[63] |
Hu J, Chen M, Fang X,
|
[64] |
Yoon S B, Kim J Y, Kim J H,
|
[65] |
Li Y, Li N, Pan W,
|
[66] |
Yoon S B, Sohn K, Kim J Y,
|
[67] |
Dai L, Li W, Zhou K,
|
[68] |
Sultana S, Alam M A, Takafuji M,
|
[69] |
Hao N, Jayawardana K W, Chen X,
|
[70] |
Cheng K, Peng S, Xu C,
|
[71] |
Nishanthi S T, Yadav K K, Baruah A,
|
[72] |
Li Y, Bastakoti B P, Imura M,
|
[73] |
Wang S, Zhang M, Wang D,
|
[74] |
Wang F, Tang Y, Zhang B,
|
[75] |
Shang Q, Zhou Y . Facile fabrication of hollow mesoporous silica microspheres with hierarchical shell structure via a sol-gel process.Journal of Sol-Gel Science and Technology, 2015, 75(1): 206–214
|
[76] |
Poostforooshan J, Belbekhouche S, Shaban M,
|
[77] |
Chen P, Zhao Y, Chen T,
|
[78] |
Guo X, Zhang Q, Ding X,
|
[79] |
Zhang K, Xu L L, Jiang J G,
|
[80] |
Liu W, Zhang Y, Xu J,
|
[81] |
Seyed-Talebi S M, Kazeminezhad I, Motamedi H . TiO2 hollow spheres as a novel antibiotic carrier for the direct delivery of gentamicin.Ceramics International, 2018, 44(12): 13457–13462
|
[82] |
Munir M U, Ihsan A, Sarwar Y,
|
[83] |
Chen X, Schluesener H J . Nanosilver: a nanoproduct in medical application.Toxicology Letters, 2008, 176(1): 1–12
|
[84] |
Durán N, Durán M, de Jesus M B,
|
[85] |
Wijnhoven S W P, Peijnenburg W J G M, Herberts C A,
|
[86] |
Rai M K, Deshmukh S D, Ingle A P,
|
[87] |
Silva L P, Silveira A P, Bonatto C C,
|
[88] |
Zhang F, Wu X, Chen Y,
|
[89] |
El Badawy A M, Silva R G, Morris B,
|
[90] |
Lansdown A B G . A review of the use of silver in wound care: facts and fallacies.British Journal of Nursing, 2004, 13(Sup1): S6–S19
CrossRef
Google scholar
|
[91] |
Yu B, Leung K M, Guo Q,
|
[92] |
Feng Q L, Wu J, Chen G Q,
|
[93] |
Sondi I, Salopek-Sondi B . Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria.Journal of Colloid and Interface Science, 2004, 275(1): 177–182
|
[94] |
Van H P, Gashe B A, Ahmad J. Colloidal silver as an antimicrobial agent: fact or fiction? Journal of Wound Care, 2004, 13(4): 154–155
|
[95] |
Greulich C, Braun D, Peetsch A,
|
[96] |
Jiravova J, Tomankova K B, Harvanova M,
|
[97] |
Dibrov P, Dzioba J, Gosink K K,
|
[98] |
Mijnendonckx K, Leys N, Mahillon J,
|
[99] |
Guo D, Zhu L, Huang Z,
|
[100] |
Yakabe Y, Sano T, Ushio H,
|
[101] |
Melaiye A, Youngs W J . Silver and its application as an antimicrobial agent.Expert Opinion on Therapeutic Patents, 2005, 15(2): 125–130
|
[102] |
Greulich C, Diendorf J, Simon T,
|
[103] |
Yu Q, Wu Z, Chen H . Dual-function antibacterial surfaces for biomedical applications.Acta Biomaterialia, 2015, 16: 1–13
|
[104] |
Soenen S J, Parak W J, Rejman J,
|
[105] |
Yang H, Liu Y, Shen Q,
|
[106] |
Hrenovic J, Milenkovic J, Goic-Barisic I,
|
[107] |
Perkas N, Lipovsky A, Amirian G,
|
[108] |
Zhang S, Fu R, Wu D,
|
[109] |
Fang W, Ma L, Zheng J,
|
[110] |
Wan X, Zhuang L, She B,
|
[111] |
Xu P, Liang J, Cao X,
|
[112] |
Lin L, Zhang H, Cui H,
|
[113] |
Chen S F, Li J P, Qian K,
|
[114] |
Kobayashi Y, Katakami H, Mine E,
|
[115] |
Torres-Torres C, Tamayo-Rivera L, Rangel-Rojo R,
|
[116] |
Chiu P H, Huang C J, Wu T Y,
|
[117] |
Quinsaat J E Q, Nüesch F A, Hofmann H,
|
[118] |
Liong M, France B, Bradley K A,
|
[119] |
Yang H, You W, Shen Q,
|
[120] |
Shen Q, Wang J, Yang H,
|
[121] |
Li X, Zuo W, Luo M,
|
[122] |
Qiao Y, Mai G, Li Y,
|
[123] |
Gómez-Lus R . Evolution of bacterial resistance to antibiotics during the last three decades.International Microbiology, 1998, 1(4): 279–284
|
[124] |
Kapoor G, Saigal S, Elongavan A . Action and resistance mechanisms of antibiotics: a guide for clinicians.Journal of Anaesthesiology, Clinical Pharmacology, 2017, 33(3): 300–305
|
[125] |
World Health Organization. New report calls for urgent action to avert antimicrobial resistance crisis. Released date: 2019–04-29
|
[126] |
Smerkova K, Dolezelikova K, Bozdechova L,
|
[127] |
Nor Y A, Zhang H, Purwajanti S,
|
[128] |
Deepika D, PonnanEttiyappan J B . Synthesis and characterization of microporous hollow core‒shell silica nanoparticles (HCSNs) of tunable thickness for controlled release of doxorubicin.Journal of Nanoparticle Research, 2018, 20(7): 187
|
[129] |
Gessner I, Krakor E, Jurewicz A,
|
[130] |
Cui L, Neoh H, Shoji M,
|
[131] |
Pacifici G M, Allegaert K . Clinical pharmacokinetics of vancomycin in the neonate: a review.Clinics, 2012, 67(7): 831–837
|
[132] |
Kurczewska J, Sawicka P, Ratajczak M, ,
|
[133] |
Hao X, Hu X, Zhang C,
|
[134] |
Nguyen T-K, Selvanayagam R, Ho K K K,
|
[135] |
Mahlapuu M, Håkansson J, Ringstad L,
|
[136] |
Bahar A A, Ren D . Antimicrobial peptides.Pharmaceuticals, 2013, 6(12): 1543–1575
|
[137] |
Broekaert W F, Cammue B P A, De Bolle M F C,
|
[138] |
Tam J, Wang S, Wong K,
|
[139] |
Reddy K V R, Yedery R D, Aranha C . Antimicrobial peptides: premises and promises.International Journal of Antimicrobial Agents, 2004, 24(6): 536–547
|
[140] |
Li W, Tailhades J, O’Brien-Simpson N M,
|
[141] |
Holfeld L, Knappe D, Hoffmann R . Proline-rich antimicrobial peptides show a long-lasting post-antibiotic effect on Enterobacteriaceae and Pseudomonas aeruginosa.Journal of Antimicrobial Chemotherapy, 2018, 73(4): 933–941
|
[142] |
Malmsten M . Interactions of antimicrobial peptides with bacterial membranes and membrane components.Current Topics in Medicinal Chemistry, 2015, 16(1): 16–24
|
[143] |
Brogden K A . Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature Reviews.Microbiology, 2005, 3(3): 238–250
|
[144] |
Pavithrra G, Rajasekaran R . Gramicidin peptide to combat antibiotic resistance: a review.International Journal of Peptide Research and Therapeutics, 2020, 26(1): 191–199
|
[145] |
Walensky L D, Bird G H . Hydrocarbon-stapled peptides: principles, practice, and progress: miniperspective.Journal of Medicinal Chemistry, 2014, 57(15): 6275–6288
|
[146] |
Mourtada R, Herce H D, Yin D J,
|
[147] |
Brogden N K, Brogden K A. Will new generations of modified antimicrobial peptides improve their potential as pharmaceuticals? International Journal of Antimicrobial Agents, 2011, 28(3): 217–225
|
[148] |
Han Y Y, Liu H Y, Han D J,
|
[149] |
Zasloff M . Antimicrobial peptides of multicellular organisms.Nature, 2002, 415(6870): 389–395
|
[150] |
Yu Q, Deng T, Lin F C,
|
[151] |
Izquierdo-Barba I, Vallet-Regí M, Kupferschmidt N,
|
[152] |
Gao C, Izquierdo-Barba I, Nakase I,
|
[153] |
Braun K, Pochert A, Lindén M,
|
[154] |
Xu C, He Y, Li Z,
|
[155] |
He D, Yu Y, Liu F,
|
[156] |
Andrade A L, de Vasconcelos M A, Arruda F V de S,
|
[157] |
Zharkova M S, Orlov D S, Golubeva O Yu, et al. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics — a novel way to combat antibiotic resistance? Frontiers in Cellular and Infection Microbiology, 2019, 9: 128
|
[158] |
Yang N, Zhu M, Xu G,
|
[159] |
Aznar E, Oroval M, Pascual L,
|
[160] |
Zhu X, Shi J, Ma H,
|
[161] |
Seo H S, Bang J, Kim H,
|
[162] |
Park S Y, Barton M, Pendleton P. Mesoporous silica as a natural antimicrobial carrier. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 385(1‒3): 256–261
|
[163] |
Ruiz-Rico M, Fuentes C, Pérez-Esteve É,
|
[164] |
Chung S K, Seo J Y, Lim J H,
CrossRef
Google scholar
|
[165] |
Osanloo M, Sedaghat M M, Sereshti H,
|
[166] |
Peña-Gómez N, Ruiz-Rico M, Pérez-Esteve É,
|
[167] |
Jin L, Liu X, Bian C,
|
[168] |
Tomšič B, Simončič B, Orel B,
|
[169] |
Li H, Granados A, Fernández E,
|
[170] |
Zhao D, Wei Y, Jin Q,
|
[171] |
World Health Organization. WHO, UN set out steps to meet world COVID vaccination targets. Released date: 2021-10-17
|
[172] |
Wyss Institute. A deceptively simple path to powerful new technology. Released date: 2013-11-21
|
/
〈 | 〉 |