Antibacterial hydroxyapatite coatings on titanium dental implants
Ziming Liao, Jingxuan Li, Yimeng Su, Fenyan Miao, Xiumei Zhang, Yu Gu, Jingjing Du, Ruiqiang Hang, Yan Wei, Weiyi Chen, Di Huang
Antibacterial hydroxyapatite coatings on titanium dental implants
Titanium and its alloys are often used as substrates for dental implants due to their excellent mechanical properties and good biocompatibility. However, their ability to bind to neighboring bone is limited due to the lack of biological activity. At the same time, they show poor antibacterial ability which can easily cause bacterial infection and chronic inflammation, eventually resulting in implant failure. The preparation of composite hydroxyapatite coatings with antibacterial ability can effectively figure out these concerns. In this review, the research status and development trends of antibacterial hydroxyapatite coatings constructed on titanium and its alloys are analyzed and reviewed. This review may provide valuable reference for the preparation and application of high-performance and multi-functional dental implant coatings in the future.
composite / dental implant / hydroxyapatite / titanium / antibacterial
[1] |
Dux K E . Implantable materials update.Clinics in Podiatric Medicine and Surgery, 2019, 36: 535–542
|
[2] |
Bai L, Du Z, Du J,
|
[3] |
Zhao Y, Sun Y H, Lan W W,
|
[4] |
Nuswantoro N F, Manjas M, Suharti N,
|
[5] |
Cho H R, Choe H C . Morphology of hydroxyapatite and Sr coatings deposited using radio frequency-magnetron sputtering method on nanotube formed Ti‒6Al‒4V alloy.Thin Solid Films, 2021, 735: 138893
CrossRef
Google scholar
|
[6] |
Fathi A M, Ahmed M K, Afifi M,
|
[7] |
Harun W S W, Asri R I M, Alias J,
|
[8] |
Zhao Y, Bai L, Sun Y,
CrossRef
Google scholar
|
[9] |
Weng Z M, Bai L, Liu Y L,
|
[10] |
Chen Z, Wang Z, Qiu W,
|
[11] |
Guo C, Cui W, Wang X,
|
[12] |
Kiran A S K, Kizhakeyil A, Ramalingam R,
|
[13] |
Wu S, Xu J, Zou L,
|
[14] |
Lin Q, Huang D, Du J,
|
[15] |
Qiaoxia L, Yujie Z, Meng Y,
|
[16] |
Carrado A, Perrin-Schmitt F, Le Q V,
|
[17] |
Fihri A, Len C, Varma R S,
|
[18] |
Liu X, He D, Zhou Z,
CrossRef
Google scholar
|
[19] |
Priyadarshini B, Vijayalakshmi U . In vitro bioactivity, biocompatibility and corrosion resistance of multi-ionic (Ce/Si) co-doped hydroxyapatite porous coating on Ti‒6Al‒4 V for bone regeneration applications.Materials Science and Engineering C, 2021, 119: 111620
CrossRef
Google scholar
|
[20] |
Stevanovic M, Dosic M, Jankovic A,
|
[21] |
Vu A A, Bose S . Natural antibiotic oregano in hydroxyapatite-coated titanium reduces osteoclastic bone resorption for orthopedic and dental applications.ACS Applied Materials & Interfaces, 2020, 12: 52383–52392
|
[22] |
Bakhshandeh S, Yavari S A . Electrophoretic deposition: a versatile tool against biomaterial associated infections.Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(8): 1128–1148
CrossRef
Google scholar
|
[23] |
Spengler C, Nolle F, Mischo J,
|
[24] |
Wu S, Altenried S, Zogg A,
|
[25] |
Pranjali P, Meher M K, Raj R,
|
[26] |
Skovdal S M, Jorgensen N P, Petersen E,
|
[27] |
Fang Z, Chen J, Zhu Y,
|
[28] |
Qiao Y, Ping Y, Zhang H,
|
[29] |
Zhang G, Wu Z, Yang Y,
CrossRef
Google scholar
|
[30] |
Li B, Ma J, Wang D,
|
[31] |
Liu R, Memarzadeh K, Chang B,
|
[32] |
Xu N, Fu J, Zhao L,
CrossRef
Google scholar
|
[33] |
Wang X, Yan L, Ye T,
|
[34] |
Stanić V, Dimitrijević S, Antić-Stanković J,
|
[35] |
Karbowniczek J, Cordero-Arias L, Virtanen S,
CrossRef
Google scholar
|
[36] |
Karthikeyan K, Chandraprabha M N, Hari Krishna R,
CrossRef
Google scholar
|
[37] |
Thukkaram M, Coryn R, Asadian M,
|
[38] |
Sivaraj D, Vijayalakshmi K, Ganeshkumar A,
CrossRef
Google scholar
|
[39] |
Jugowiec D, Łukaszczyk A, Cieniek Ł,
|
[40] |
Chen H, Wang C, Yang X,
|
[41] |
Fu X, Zhou X, Liu P,
|
[42] |
Fathyunes L, Khalil-Allafi J, Sheykholeslami S O R,
|
[43] |
Lai Y L, Lai S B, Yen S K . Paclitaxel/hydroxyapatite composite coatings on titanium alloy for biomedical applications.Materials Science and Engineering C, 2017, 79: 622–628
|
[44] |
Fu X, Liu P, Zhao D,
|
[45] |
Shi Y Y, Li M, Liu Q,
|
[46] |
Chernozem R V, Surmeneva M A, Krause B,
|
[47] |
Horandghadim N, Khalil-Allafi J, Kaçar E,
|
[48] |
Liu F, Wang X, Chen T,
|
[49] |
Fu C, Zhang X, Savino K,
|
[50] |
Erakovic S, Jankovic A, Tsui G C,
|
[51] |
Mokabber T, Cao H T, Norouzi N,
|
[52] |
Yan L, Xiang Y, Yu J,
|
[53] |
Yu W Z, Zhang Y, Liu X,
|
[54] |
Ghosh R, Swart O, Westgate S,
|
[55] |
Hadidi M, Bigham A, Saebnoori E,
|
[56] |
Huang Y, Hao M, Nian X,
|
[57] |
Wang Y, Yan L, Cheng R,
|
[58] |
Mehrvarz A, Khalil-Allafi J, Khosrowshahi A K . Biocompatibility and antibacterial behavior of electrochemically deposited hydroxyapatite/ZnO porous nanocomposite on NiTi biomedical alloy.Ceramics International, 2022, 48(11): 16326–16336
CrossRef
Google scholar
|
[59] |
Yavaş A, Güler S, Onak G,
CrossRef
Google scholar
|
[60] |
Geuli O, Lewinstein I, Mandler D . Composition-tailoring of ZnO‒hydroxyapatite nanocomposite as bioactive and antibacterial coating.ACS Applied Nano Materials, 2019, 2: 2946–2957
|
[61] |
He X, Huang Z, Liu W,
CrossRef
Google scholar
|
[62] |
Ghiyasi Y, Salahi E, Esfahani H . Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application.Materials Today: Communications, 2021, 26: 102163
CrossRef
Google scholar
|
[63] |
Manuja A, Kumar B, Kumar R,
|
[64] |
Ali A H . Experimental investigations on effects of ZnO NPS and annona muricata extract for in vitro and in vivo antibacterial activity.Materials Today: Proceedings, 2022, 57(Part 2): 527–530
CrossRef
Google scholar
|
[65] |
Babu M M, Rao P V, Singh R K,
|
[66] |
Yazici H, Habib G, Boone K,
|
[67] |
Sobolev A, Valkov A, Kossenko A,
|
[68] |
Thukkaram M, Coryn R, Asadian M,
|
[69] |
Schwirn K, Lee W, Hillebrand R,
CrossRef
Google scholar
|
[70] |
Jonasova L, Muller F A, Helebrant A,
|
[71] |
Fazel M, Salimijazi H R, Shamanian M,
|
[72] |
He X, Zhang X, Wang X,
CrossRef
Google scholar
|
[73] |
Shimabukuro M, Tsutsumi Y, Yamada R,
|
[74] |
Yu S, Guo D, Han J,
|
[75] |
Li B, Xia X, Guo M,
|
[76] |
Yilmaz E, Cakiroglu B, Gokce A,
|
[77] |
Hu H, Lin C, Lui P P Y,
CrossRef
Google scholar
|
[78] |
Sobolev A, Wolicki I, Kossenko A,
CrossRef
Google scholar
|
[79] |
Li B, Yang T, Sun R,
|
[80] |
Ziabka M, Kiszka J, Trenczek-Zajac A,
|
[81] |
Jaafar A, Hecker C, Arki P,
CrossRef
Google scholar
|
[82] |
Mohammad N F, Ahmad R N, Mohd Rosli N L,
|
[83] |
Azari R, Rezaie H R, Khavandi A . Investigation of functionally graded HA‒TiO2 coating on Ti–6Al–4V substrate fabricated by sol-gel method.Ceramics International, 2019, 45: 17545–17555
|
[84] |
Kazemi M, Ahangarani S, Esmailian M,
CrossRef
Google scholar
|
[85] |
Domínguez-Trujillo C, Peón E, Chicardi E,
|
[86] |
Tranquillo E, Bollino F . Surface modifications for implants lifetime extension: an overview of sol-gel coatings.Coatings, 2020, 10(6): 589
CrossRef
Google scholar
|
[87] |
Shin D Y, Cheon K H, Song E H,
|
[88] |
Batebi K, Abbasi Khazaei B, Afshar A . Characterization of sol-gel derived silver/fluor-hydroxyapatite composite coatings on titanium substrate.Surface and Coatings Technology, 2018, 352: 522–528
|
[89] |
Bertoglio F, De Vita L, D’Agostino A,
CrossRef
Google scholar
|
[90] |
Madhan Kumar A, Adesina A Y, Hussein M A,
|
[91] |
Shibata S, Suge T, Kimura T,
|
[92] |
Ge X, Leng Y, Bao C,
|
[93] |
Bi Q, Song X, Chen Y,
|
[94] |
Hung K Y, Lo S C, Shih C S,
|
[95] |
Singh H, Kumar R, Prakash C,
CrossRef
Google scholar
|
[96] |
Bencina M, Resnik M, Staric P,
CrossRef
Google scholar
|
[97] |
Sarkar N, Bose S . Controlled delivery of curcumin and vitamin K2 from hydroxyapatite-coated titanium implant for enhanced in vitro chemoprevention, osteogenesis, and in vivo osseointegration.ACS Applied Materials & Interfaces, 2020, 12: 13644–13656
|
[98] |
Bai Y, Chi B X, Ma W,
|
[99] |
Ke D, Vu A A, Bandyopadhyay A,
|
[100] |
Ullah I, Siddiqui M A, Liu H,
|
[101] |
Ullah I, Xu Q, Jan H U,
CrossRef
Google scholar
|
[102] |
Liu T, Chen Y, Apicella A,
|
[103] |
Wang C, Hu H, Li Z,
|
[104] |
Reggente M, Masson P, Dollinger C,
|
[105] |
Xu J, Aoki H, Kasugai S,
|
[106] |
Deng B W, Bruzzaniti A, Cheng G J . Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering.International Journal of Nanomedicine, 2018, 13: 8217–8230
|
[107] |
Deng B, Bruzzaniti A, Cheng G J . Enhancement of osteoblast activity on nanostructured NiTi/hydroxyapatite coatings on additive manufactured NiTi metal implants by nanosecond pulsed laser sintering.International Journal of Nanomedicine, 2018, 13: 8217–8230
|
[108] |
Bai L, Yang Y, Mendhi J,
|
[109] |
Xue X, Lu L, He D,
CrossRef
Google scholar
|
[110] |
Gao A, Hang R, Bai L,
|
[111] |
Liu X, Man H C . Laser fabrication of Ag‒HA nanocomposites on Ti6Al4V implant for enhancing bioactivity and antibacterial capability.Materials Science and Engineering C, 2017, 70: 1–8
|
[112] |
Hu X, Xu R, Yu X,
CrossRef
Google scholar
|
[113] |
Cho H R, Choe H C . Morphology of hydroxyapatite and Sr coatings deposited using radio frequency-magnetron sputtering method on nanotube formed Ti‒6Al‒4V alloy.Thin Solid Films, 2021, 735: 138893
CrossRef
Google scholar
|
[114] |
Prosolov K A, Belyavskaya O A, Bolat-Ool A A,
CrossRef
Google scholar
|
[115] |
Wu J, Ueda K, Narushima T . Fabrication of Ag and Ta co-doped amorphous calcium phosphate coating films by radiofrequency magnetron sputtering and their antibacterial activity.Materials Science and Engineering C, 2020, 109: 110599
|
[116] |
Prosolov K A, Belyavskaya O A, Linders J,
CrossRef
Google scholar
|
[117] |
Li B, Xia X, Guo M,
CrossRef
Google scholar
|
[118] |
Pang X, Zhitomirsky I . Electrodeposition of composite hydroxyapatite‒chitosan films.Materials Chemistry and Physics, 2005, 94: 245–251
|
[119] |
Palierse E, Helary C, Krafft J M,
CrossRef
Google scholar
|
[120] |
Luo J, Mamat B, Yue Z,
CrossRef
Google scholar
|
[121] |
Li K, Chen J, Xue Y,
CrossRef
Google scholar
|
[122] |
Wang Z, Mei L, Liu X,
CrossRef
Google scholar
|
[123] |
Ivanova A A, Surmenev R A, Surmeneva M A,
|
[124] |
Surmeneva M A, Sharonova A A, Chernousova S,
|
[125] |
Wang M, Zhang H Y, Xiang Y Y,
CrossRef
Google scholar
|
[126] |
Geuli O, Metoki N, Eliaz N,
|
[127] |
Huang D, Lin Q, Zhou Y,
CrossRef
Google scholar
|
/
〈 | 〉 |