Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering

Xiaoyu MA, Guifeng CHEN, Xiaoming ZHANG, Taoyuan JIA, Weiqi ZHAO, Zhaojun MO, Heyan LIU, Xuefang DAI, Guodong LIU

PDF(3778 KB)
PDF(3778 KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220615. DOI: 10.1007/s11706-022-0615-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering

Author information +
History +

Abstract

Heusler alloys are a kind of intermetallic compounds with highly-ordered arrangement of atoms. Many attractive functional materials have been developed in Heusler alloys. Due to the application requirements of materials in new-generation electronic devices and spintronics devices, one-dimensional nanostructured Heusler alloys with special functions are needed. In this work, it is proposed to grow one-dimensional Heusler alloy nanostructures (1D-HA-NSs) by magnetron sputtering plus anodic aluminum oxide (AAO) template. Nanowires with different shapes, amorphous-coated (AC) nanowires and nanotubes were successfully grown for several Heusler alloys. AC nanowires are the unique products of our method. Heusler alloy nanotubes are reported for the first time. The one-dimensional nanostructures grow on the surface of the AAO substrate rather than in the holes. The top of the pore wall is the nanostructure growth point, the shape of which determines the morphology of the nanostructures. A general growth mechanism model of one-dimensional nanostructures on AAO template was established and further confirmed by experimental observation.

Graphical abstract

Keywords

Heusler alloy / one-dimensional nanostructure / magnetron sputtering

Cite this article

Download citation ▾
Xiaoyu MA, Guifeng CHEN, Xiaoming ZHANG, Taoyuan JIA, Weiqi ZHAO, Zhaojun MO, Heyan LIU, Xuefang DAI, Guodong LIU. Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering. Front. Mater. Sci., 2022, 16(3): 220615 https://doi.org/10.1007/s11706-022-0615-7

References

[1]
Webster P J . Heusler alloys. Contemporary Physics, 1969, 10( 6): 559– 577
CrossRef Google scholar
[2]
Campbell C C M . Hyperfine field systematics in Heusler alloys. Journal of Physics F: Metal Physics, 1975, 5( 10): 1931– 1945
CrossRef Google scholar
[3]
Manna K, Sun Y, Muechler L, , . Heusler, Weyl and Berry. Nature Reviews Materials, 2018, 3( 8): 244– 256
CrossRef Google scholar
[4]
Felser C, Wollmann L, Chadov S, , . Basics and prospective of magnetic Heusler compounds. APL Materials, 2015, 3( 4): 041518
CrossRef Google scholar
[5]
de Groot R A, Mueller F M, van Engen P G, , . New class of materials: half-merallic ferromagnets. Physical Review Letters, 1983, 50( 25): 2024– 2027
CrossRef Google scholar
[6]
Webster P J, Ziebeck K R A, Town S L, , . Magnetic order and phase transformation in Ni2MnGa. Philosophical Magazine B, 1984, 49( 3): 295– 310
CrossRef Google scholar
[7]
Ullakko K, Huang J K, Kantner C, , . Large magnetic-field-induced strains in Ni2MnGa single crystals. Applied Physics Letters, 1996, 69( 13): 1966– 1968
CrossRef Google scholar
[8]
Wang X L . Proposal for a new class of materials: spin gapless semiconductors. Physical Review Letters, 2008, 100( 15): 156404
CrossRef Pubmed Google scholar
[9]
Wang X L, Dou S X, Zhang C . Zero-gap materials for future spintronics, electronics and optics. NPG Asia Materials, 2010, 2( 1): 31– 38
CrossRef Google scholar
[10]
Ouardi S, Fecher G H, Felser C, , . Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl. Physical Review Letters, 2013, 110( 10): 100401
CrossRef Pubmed Google scholar
[11]
Bernevig B A, Hughes T L, Zhang S C . Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314( 5806): 1757– 1761
CrossRef Pubmed Google scholar
[12]
König M, Wiedmann S, Brüne C, , . Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318( 5851): 766– 770
CrossRef Pubmed Google scholar
[13]
Chadov S, Qi X, Kübler J, , . Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Materials, 2010, 9( 7): 541– 545
CrossRef Pubmed Google scholar
[14]
Lin H, Wray L A, Xia Y, , . Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Materials, 2010, 9( 7): 546– 549
CrossRef Pubmed Google scholar
[15]
Xiao D, Yao Y, Feng W, , . Half-Heusler compounds as a new class of three-dimensional topological insulators. Physical Review Letters, 2010, 105( 9): 096404
CrossRef Pubmed Google scholar
[16]
Burkov A A . Topological semimetals. Nature Materials, 2016, 15( 11): 1145– 1148
CrossRef Pubmed Google scholar
[17]
Yan B, Felser C . Topological materials: Weyl semimetals. Annual Review of Condensed Matter Physics, 2017, 8 : 337– 354
CrossRef Google scholar
[18]
Chang G, Xu S Y, Wieder B J, , . Unconventional chiral fermions and large topological Fermi arcs in RhSi. Physical Review Letters, 2017, 119( 20): 206401
CrossRef Pubmed Google scholar
[19]
Moore J . Topological insulators: the next generation. Nature Physics, 2009, 5( 6): 378– 380
CrossRef Google scholar
[20]
Zhang H J, Liu C X, Qi X L, , . Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 2009, 5( 6): 438– 442
CrossRef Google scholar
[21]
Wang X T, Cheng Z X, Wang J L, , . Recent advances in the Heusler based spin-gapless semiconductors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2016, 4( 30): 7176– 7192
CrossRef Google scholar
[22]
Gabor M S, Petrisor T, Tiusan C, , . Magnetic and structural anisotropies of Co2FeAl Heusler alloy epitaxial thin films. Physical Review B: Condensed Matter and Materials Physics, 2011, 84( 13): 134413
CrossRef Google scholar
[23]
Sakuraba Y, Nakata J, Oogane M, , . Fabrication of Co2MnAl Heusler alloy epitaxial film using Cr buffer layer. Japanese Journal of Applied Physics, 2005, 44( 9A): 6535– 6537
CrossRef Google scholar
[24]
Jourdan M, Minár J, Braun J, , . Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nature Communications, 2014, 5( 1): 3974
CrossRef Pubmed Google scholar
[25]
Reichlova H, Schlitz R, Beckert S, , . Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa. Applied Physics Letters, 2018, 113( 21): 212405
CrossRef Google scholar
[26]
Sun N Y, Zhang Y Q, Fu H R, , . Perpendicular magnetic anisotropy in Mn2CoAl thin film. AIP Advances, 2016, 6( 1): 015006
CrossRef Google scholar
[27]
Jamer M E, Sterbinsky G E, Stephen G M, , . Magnetic properties of low-moment ferrimagnetic Heusler Cr2CoGa thin films grown by molecular beam epitaxy. Applied Physics Letters, 2016, 109( 18): 182402
CrossRef Google scholar
[28]
Ernst B, Sahoo R, Sun Y, , . Anomalous Hall effect and the role of Berry curvature in Co2TiSn Heusler films. Physical Review B, 2019, 100( 5): 054445
CrossRef Google scholar
[29]
Schneider H, Jakob G, Kallmayer M, , . Epitaxial film growth and magnetic properties of Co2FeSi. Physical Review B: Condensed Matter and Materials Physics, 2006, 74( 17): 174426
CrossRef Google scholar
[30]
Shimanuki Y, Kudo K, Ishibe T, , . Thermoelectric properties of single-phase full-Heusler alloy Fe2TiSi films with D03-type disordering. Journal of Applied Physics, 2020, 127( 5): 055106
CrossRef Google scholar
[31]
Uvarov N V, Kudryavtsev Y V, Kravets A F, , . Electronic structure, optical and magnetic properties of Co2FeGe Heusler alloy films. Journal of Applied Physics, 2012, 112( 6): 063909
CrossRef Google scholar
[32]
Bainsla L, Yilgin R, Okabayashi J, , . Structural and magnetic properties of epitaxial thin films of the equiatomic quaternary CoFeMnSi Heusler alloy. Physical Review B, 2017, 96( 9): 094404
CrossRef Google scholar
[33]
Asvini V, Saravanan G, Kalaiezhily R K, , . Effect of substrate temperature on structural, morphological, magnetic, and electrical properties of Fe2CoSi Heusler alloy thin films for spin-based device applications. Journal of Superconductivity and Novel Magnetism, 2019, 32( 7): 2247– 2257
CrossRef Google scholar
[34]
Yamada S, Kobayashi S, Kuroda F, , . Magnetic and transport properties of equiatomic quaternary Heusler CoFeVSi epitaxial films. Physical Review Materials, 2018, 2( 12): 124403
CrossRef Google scholar
[35]
Jin Y, Kharel P, Valloppilly S R, , . Half-metallicity in highly L21-ordered CoFeCrAl thin films. Applied Physics Letters, 2016, 109( 14): 142410
CrossRef Google scholar
[36]
Safeer A, Ahmad N, Khan S, , . Magnetization behavior of electrochemically synthesized Co2MnSn full Heusler alloy nanowire arrays. Journal of Applied Physics, 2019, 125( 3): 034302
CrossRef Google scholar
[37]
Khan S, Ahmad N, Ahmed N, , . Analysis of electronic, magnetic and half-metallic properties of L21-type (Co2Mn0.5Fe0.5Sn) Heusler alloy nanowires synthesized by AC-electrodeposition in AAO templates. Journal of Magnetism and Magnetic Materials, 2018, 460 : 120– 127
CrossRef Google scholar
[38]
Khan S, Ahmad N, Ahmed N, , . Structural, magnetic and transport properties of Fe-based full Heusler alloy Fe2CoSn nanowires prepared by template-based electrodeposition. Journal of Magnetism and Magnetic Materials, 2018, 465 : 462– 470
CrossRef Google scholar
[39]
Simon P, Wolf D, Wang C, , . Synthesis and three-dimensional magnetic field mapping of Co2FeGa Heusler nanowires at 5 nm resolution. Nano Letters, 2016, 16( 1): 114– 120
CrossRef Pubmed Google scholar
[40]
Sharma M, Das A, Kuanr B K . Co-based full Heusler alloy nanowires: modulation of static and dynamic properties through deposition parameters. AIP Advances, 2019, 9( 12): 125054
CrossRef Google scholar
[41]
Javed K, Zhang X M, Parajuli S, , . Magnetization behavior of NiMnGa alloy nanowires prepared by DC electrodeposition. Journal of Magnetism and Magnetic Materials, 2020, 498 : 166232
CrossRef Google scholar
[42]
Sapkota K R, Gyawali P, Forbes A, , . Synthesis and characterization of Co2FeAl nanowires. Journal of Applied Physics, 2012, 111( 12): 123906
CrossRef Google scholar
[43]
Lu H X, Liu Y C, Kou X L . Communication-electrodeposition, microstructure and magnetic properties of Co2FeSn Heusler alloy nanowires. Journal of the Electrochemical Society, 2018, 165( 16): D813– D815
CrossRef Google scholar
[44]
Li Y H, Kou X L, Hou N . Synthesis, microstructure and magnetic properties of Fe2CoAl nanofibers. Functional Materials Letters, 2017, 10( 4): 1750035
CrossRef Google scholar
[45]
Wu Y, Kou X L, Huang J J . Fabrication and magnetic properties of electrospun Fe2NiGa nanofibers. Materials Express, 2018, 8( 4): 375– 380
CrossRef Google scholar
[46]
Seo K, Bagkar N, Kim S I, , . Diffusion-driven crystal structure transformation: synthesis of Heusler alloy Fe3Si nanowires. Nano Letters, 2010, 10( 9): 3643– 3647
CrossRef Pubmed Google scholar
[47]
Zhao W Q, Dai X F, Zhang X M, , . Preparation and physical properties of a Cr3Al film with a DO3 structure. IUCrJ, 2019, 6( 4): 552– 557
CrossRef Pubmed Google scholar
[48]
Li J, Chen H, Li Y, , . A theoretical design of half-metallic compounds by a long range of doping Mn for Heusler-type Cr3Al. Journal of Applied Physics, 2009, 105( 8): 083717
CrossRef Google scholar
[49]
Gao G Y, Yao K L . Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: the D03-type Heusler alloys. Applied Physics Letters, 2013, 103( 23): 232409
CrossRef Google scholar
[50]
Galanakis I, Dederichs P H, Papanikolaou N . Slater‒Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Physical Review B: Condensed Matter, 2002, 66( 17): 174429
CrossRef Google scholar

Acknowledgements

This work was financially supported by the Natural Science Foundation of Hebei Province (Grant No. E2019202107).

Electronic supplementary information

Supplementary material can be found in the online version at https://doi.org/10.1007/s11706-022-0615-7.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(3778 KB)

Accesses

Citations

Detail

Sections
Recommended

/