Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering

Xiaoyu MA , Guifeng CHEN , Xiaoming ZHANG , Taoyuan JIA , Weiqi ZHAO , Zhaojun MO , Heyan LIU , Xuefang DAI , Guodong LIU

Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220615

PDF (3778KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220615 DOI: 10.1007/s11706-022-0615-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering

Author information +
History +
PDF (3778KB)

Abstract

Heusler alloys are a kind of intermetallic compounds with highly-ordered arrangement of atoms. Many attractive functional materials have been developed in Heusler alloys. Due to the application requirements of materials in new-generation electronic devices and spintronics devices, one-dimensional nanostructured Heusler alloys with special functions are needed. In this work, it is proposed to grow one-dimensional Heusler alloy nanostructures (1D-HA-NSs) by magnetron sputtering plus anodic aluminum oxide (AAO) template. Nanowires with different shapes, amorphous-coated (AC) nanowires and nanotubes were successfully grown for several Heusler alloys. AC nanowires are the unique products of our method. Heusler alloy nanotubes are reported for the first time. The one-dimensional nanostructures grow on the surface of the AAO substrate rather than in the holes. The top of the pore wall is the nanostructure growth point, the shape of which determines the morphology of the nanostructures. A general growth mechanism model of one-dimensional nanostructures on AAO template was established and further confirmed by experimental observation.

Graphical abstract

Keywords

Heusler alloy / one-dimensional nanostructure / magnetron sputtering

Cite this article

Download citation ▾
Xiaoyu MA, Guifeng CHEN, Xiaoming ZHANG, Taoyuan JIA, Weiqi ZHAO, Zhaojun MO, Heyan LIU, Xuefang DAI, Guodong LIU. Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering. Front. Mater. Sci., 2022, 16(3): 220615 DOI:10.1007/s11706-022-0615-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Webster P J . Heusler alloys. Contemporary Physics, 1969, 10( 6): 559– 577

[2]

Campbell C C M . Hyperfine field systematics in Heusler alloys. Journal of Physics F: Metal Physics, 1975, 5( 10): 1931– 1945

[3]

Manna K, Sun Y, Muechler L, , . Heusler, Weyl and Berry. Nature Reviews Materials, 2018, 3( 8): 244– 256

[4]

Felser C, Wollmann L, Chadov S, , . Basics and prospective of magnetic Heusler compounds. APL Materials, 2015, 3( 4): 041518

[5]

de Groot R A, Mueller F M, van Engen P G, , . New class of materials: half-merallic ferromagnets. Physical Review Letters, 1983, 50( 25): 2024– 2027

[6]

Webster P J, Ziebeck K R A, Town S L, , . Magnetic order and phase transformation in Ni2MnGa. Philosophical Magazine B, 1984, 49( 3): 295– 310

[7]

Ullakko K, Huang J K, Kantner C, , . Large magnetic-field-induced strains in Ni2MnGa single crystals. Applied Physics Letters, 1996, 69( 13): 1966– 1968

[8]

Wang X L . Proposal for a new class of materials: spin gapless semiconductors. Physical Review Letters, 2008, 100( 15): 156404

[9]

Wang X L, Dou S X, Zhang C . Zero-gap materials for future spintronics, electronics and optics. NPG Asia Materials, 2010, 2( 1): 31– 38

[10]

Ouardi S, Fecher G H, Felser C, , . Realization of spin gapless semiconductors: the Heusler compound Mn2CoAl. Physical Review Letters, 2013, 110( 10): 100401

[11]

Bernevig B A, Hughes T L, Zhang S C . Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314( 5806): 1757– 1761

[12]

König M, Wiedmann S, Brüne C, , . Quantum spin hall insulator state in HgTe quantum wells. Science, 2007, 318( 5851): 766– 770

[13]

Chadov S, Qi X, Kübler J, , . Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Materials, 2010, 9( 7): 541– 545

[14]

Lin H, Wray L A, Xia Y, , . Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Materials, 2010, 9( 7): 546– 549

[15]

Xiao D, Yao Y, Feng W, , . Half-Heusler compounds as a new class of three-dimensional topological insulators. Physical Review Letters, 2010, 105( 9): 096404

[16]

Burkov A A . Topological semimetals. Nature Materials, 2016, 15( 11): 1145– 1148

[17]

Yan B, Felser C . Topological materials: Weyl semimetals. Annual Review of Condensed Matter Physics, 2017, 8 : 337– 354

[18]

Chang G, Xu S Y, Wieder B J, , . Unconventional chiral fermions and large topological Fermi arcs in RhSi. Physical Review Letters, 2017, 119( 20): 206401

[19]

Moore J . Topological insulators: the next generation. Nature Physics, 2009, 5( 6): 378– 380

[20]

Zhang H J, Liu C X, Qi X L, , . Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nature Physics, 2009, 5( 6): 438– 442

[21]

Wang X T, Cheng Z X, Wang J L, , . Recent advances in the Heusler based spin-gapless semiconductors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2016, 4( 30): 7176– 7192

[22]

Gabor M S, Petrisor T, Tiusan C, , . Magnetic and structural anisotropies of Co2FeAl Heusler alloy epitaxial thin films. Physical Review B: Condensed Matter and Materials Physics, 2011, 84( 13): 134413

[23]

Sakuraba Y, Nakata J, Oogane M, , . Fabrication of Co2MnAl Heusler alloy epitaxial film using Cr buffer layer. Japanese Journal of Applied Physics, 2005, 44( 9A): 6535– 6537

[24]

Jourdan M, Minár J, Braun J, , . Direct observation of half-metallicity in the Heusler compound Co2MnSi. Nature Communications, 2014, 5( 1): 3974

[25]

Reichlova H, Schlitz R, Beckert S, , . Large anomalous Nernst effect in thin films of the Weyl semimetal Co2MnGa. Applied Physics Letters, 2018, 113( 21): 212405

[26]

Sun N Y, Zhang Y Q, Fu H R, , . Perpendicular magnetic anisotropy in Mn2CoAl thin film. AIP Advances, 2016, 6( 1): 015006

[27]

Jamer M E, Sterbinsky G E, Stephen G M, , . Magnetic properties of low-moment ferrimagnetic Heusler Cr2CoGa thin films grown by molecular beam epitaxy. Applied Physics Letters, 2016, 109( 18): 182402

[28]

Ernst B, Sahoo R, Sun Y, , . Anomalous Hall effect and the role of Berry curvature in Co2TiSn Heusler films. Physical Review B, 2019, 100( 5): 054445

[29]

Schneider H, Jakob G, Kallmayer M, , . Epitaxial film growth and magnetic properties of Co2FeSi. Physical Review B: Condensed Matter and Materials Physics, 2006, 74( 17): 174426

[30]

Shimanuki Y, Kudo K, Ishibe T, , . Thermoelectric properties of single-phase full-Heusler alloy Fe2TiSi films with D03-type disordering. Journal of Applied Physics, 2020, 127( 5): 055106

[31]

Uvarov N V, Kudryavtsev Y V, Kravets A F, , . Electronic structure, optical and magnetic properties of Co2FeGe Heusler alloy films. Journal of Applied Physics, 2012, 112( 6): 063909

[32]

Bainsla L, Yilgin R, Okabayashi J, , . Structural and magnetic properties of epitaxial thin films of the equiatomic quaternary CoFeMnSi Heusler alloy. Physical Review B, 2017, 96( 9): 094404

[33]

Asvini V, Saravanan G, Kalaiezhily R K, , . Effect of substrate temperature on structural, morphological, magnetic, and electrical properties of Fe2CoSi Heusler alloy thin films for spin-based device applications. Journal of Superconductivity and Novel Magnetism, 2019, 32( 7): 2247– 2257

[34]

Yamada S, Kobayashi S, Kuroda F, , . Magnetic and transport properties of equiatomic quaternary Heusler CoFeVSi epitaxial films. Physical Review Materials, 2018, 2( 12): 124403

[35]

Jin Y, Kharel P, Valloppilly S R, , . Half-metallicity in highly L21-ordered CoFeCrAl thin films. Applied Physics Letters, 2016, 109( 14): 142410

[36]

Safeer A, Ahmad N, Khan S, , . Magnetization behavior of electrochemically synthesized Co2MnSn full Heusler alloy nanowire arrays. Journal of Applied Physics, 2019, 125( 3): 034302

[37]

Khan S, Ahmad N, Ahmed N, , . Analysis of electronic, magnetic and half-metallic properties of L21-type (Co2Mn0.5Fe0.5Sn) Heusler alloy nanowires synthesized by AC-electrodeposition in AAO templates. Journal of Magnetism and Magnetic Materials, 2018, 460 : 120– 127

[38]

Khan S, Ahmad N, Ahmed N, , . Structural, magnetic and transport properties of Fe-based full Heusler alloy Fe2CoSn nanowires prepared by template-based electrodeposition. Journal of Magnetism and Magnetic Materials, 2018, 465 : 462– 470

[39]

Simon P, Wolf D, Wang C, , . Synthesis and three-dimensional magnetic field mapping of Co2FeGa Heusler nanowires at 5 nm resolution. Nano Letters, 2016, 16( 1): 114– 120

[40]

Sharma M, Das A, Kuanr B K . Co-based full Heusler alloy nanowires: modulation of static and dynamic properties through deposition parameters. AIP Advances, 2019, 9( 12): 125054

[41]

Javed K, Zhang X M, Parajuli S, , . Magnetization behavior of NiMnGa alloy nanowires prepared by DC electrodeposition. Journal of Magnetism and Magnetic Materials, 2020, 498 : 166232

[42]

Sapkota K R, Gyawali P, Forbes A, , . Synthesis and characterization of Co2FeAl nanowires. Journal of Applied Physics, 2012, 111( 12): 123906

[43]

Lu H X, Liu Y C, Kou X L . Communication-electrodeposition, microstructure and magnetic properties of Co2FeSn Heusler alloy nanowires. Journal of the Electrochemical Society, 2018, 165( 16): D813– D815

[44]

Li Y H, Kou X L, Hou N . Synthesis, microstructure and magnetic properties of Fe2CoAl nanofibers. Functional Materials Letters, 2017, 10( 4): 1750035

[45]

Wu Y, Kou X L, Huang J J . Fabrication and magnetic properties of electrospun Fe2NiGa nanofibers. Materials Express, 2018, 8( 4): 375– 380

[46]

Seo K, Bagkar N, Kim S I, , . Diffusion-driven crystal structure transformation: synthesis of Heusler alloy Fe3Si nanowires. Nano Letters, 2010, 10( 9): 3643– 3647

[47]

Zhao W Q, Dai X F, Zhang X M, , . Preparation and physical properties of a Cr3Al film with a DO3 structure. IUCrJ, 2019, 6( 4): 552– 557

[48]

Li J, Chen H, Li Y, , . A theoretical design of half-metallic compounds by a long range of doping Mn for Heusler-type Cr3Al. Journal of Applied Physics, 2009, 105( 8): 083717

[49]

Gao G Y, Yao K L . Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: the D03-type Heusler alloys. Applied Physics Letters, 2013, 103( 23): 232409

[50]

Galanakis I, Dederichs P H, Papanikolaou N . Slater‒Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Physical Review B: Condensed Matter, 2002, 66( 17): 174429

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (3778KB)

Supplementary files

FMS-22615-OF-Mxy_suppl_1

1127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/