Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering
Xiaoyu MA, Guifeng CHEN, Xiaoming ZHANG, Taoyuan JIA, Weiqi ZHAO, Zhaojun MO, Heyan LIU, Xuefang DAI, Guodong LIU
Fabrication and growth mechanism of one-dimensional Heusler alloy nanostructures with different morphologies on anodic aluminum oxide template by magnetron sputtering
Heusler alloys are a kind of intermetallic compounds with highly-ordered arrangement of atoms. Many attractive functional materials have been developed in Heusler alloys. Due to the application requirements of materials in new-generation electronic devices and spintronics devices, one-dimensional nanostructured Heusler alloys with special functions are needed. In this work, it is proposed to grow one-dimensional Heusler alloy nanostructures (1D-HA-NSs) by magnetron sputtering plus anodic aluminum oxide (AAO) template. Nanowires with different shapes, amorphous-coated (AC) nanowires and nanotubes were successfully grown for several Heusler alloys. AC nanowires are the unique products of our method. Heusler alloy nanotubes are reported for the first time. The one-dimensional nanostructures grow on the surface of the AAO substrate rather than in the holes. The top of the pore wall is the nanostructure growth point, the shape of which determines the morphology of the nanostructures. A general growth mechanism model of one-dimensional nanostructures on AAO template was established and further confirmed by experimental observation.
Heusler alloy / one-dimensional nanostructure / magnetron sputtering
[1] |
Webster P J . Heusler alloys. Contemporary Physics, 1969, 10( 6): 559– 577
CrossRef
Google scholar
|
[2] |
Campbell C C M . Hyperfine field systematics in Heusler alloys. Journal of Physics F: Metal Physics, 1975, 5( 10): 1931– 1945
CrossRef
Google scholar
|
[3] |
Manna K, Sun Y, Muechler L, ,
CrossRef
Google scholar
|
[4] |
Felser C, Wollmann L, Chadov S, ,
CrossRef
Google scholar
|
[5] |
de Groot R A, Mueller F M, van Engen P G, ,
CrossRef
Google scholar
|
[6] |
Webster P J, Ziebeck K R A, Town S L, ,
CrossRef
Google scholar
|
[7] |
Ullakko K, Huang J K, Kantner C, ,
CrossRef
Google scholar
|
[8] |
Wang X L . Proposal for a new class of materials: spin gapless semiconductors. Physical Review Letters, 2008, 100( 15): 156404
CrossRef
Pubmed
Google scholar
|
[9] |
Wang X L, Dou S X, Zhang C . Zero-gap materials for future spintronics, electronics and optics. NPG Asia Materials, 2010, 2( 1): 31– 38
CrossRef
Google scholar
|
[10] |
Ouardi S, Fecher G H, Felser C, ,
CrossRef
Pubmed
Google scholar
|
[11] |
Bernevig B A, Hughes T L, Zhang S C . Quantum spin Hall effect and topological phase transition in HgTe quantum wells. Science, 2006, 314( 5806): 1757– 1761
CrossRef
Pubmed
Google scholar
|
[12] |
König M, Wiedmann S, Brüne C, ,
CrossRef
Pubmed
Google scholar
|
[13] |
Chadov S, Qi X, Kübler J, ,
CrossRef
Pubmed
Google scholar
|
[14] |
Lin H, Wray L A, Xia Y, ,
CrossRef
Pubmed
Google scholar
|
[15] |
Xiao D, Yao Y, Feng W, ,
CrossRef
Pubmed
Google scholar
|
[16] |
Burkov A A . Topological semimetals. Nature Materials, 2016, 15( 11): 1145– 1148
CrossRef
Pubmed
Google scholar
|
[17] |
Yan B, Felser C . Topological materials: Weyl semimetals. Annual Review of Condensed Matter Physics, 2017, 8 : 337– 354
CrossRef
Google scholar
|
[18] |
Chang G, Xu S Y, Wieder B J, ,
CrossRef
Pubmed
Google scholar
|
[19] |
Moore J . Topological insulators: the next generation. Nature Physics, 2009, 5( 6): 378– 380
CrossRef
Google scholar
|
[20] |
Zhang H J, Liu C X, Qi X L, ,
CrossRef
Google scholar
|
[21] |
Wang X T, Cheng Z X, Wang J L, ,
CrossRef
Google scholar
|
[22] |
Gabor M S, Petrisor T, Tiusan C, ,
CrossRef
Google scholar
|
[23] |
Sakuraba Y, Nakata J, Oogane M, ,
CrossRef
Google scholar
|
[24] |
Jourdan M, Minár J, Braun J, ,
CrossRef
Pubmed
Google scholar
|
[25] |
Reichlova H, Schlitz R, Beckert S, ,
CrossRef
Google scholar
|
[26] |
Sun N Y, Zhang Y Q, Fu H R, ,
CrossRef
Google scholar
|
[27] |
Jamer M E, Sterbinsky G E, Stephen G M, ,
CrossRef
Google scholar
|
[28] |
Ernst B, Sahoo R, Sun Y, ,
CrossRef
Google scholar
|
[29] |
Schneider H, Jakob G, Kallmayer M, ,
CrossRef
Google scholar
|
[30] |
Shimanuki Y, Kudo K, Ishibe T, ,
CrossRef
Google scholar
|
[31] |
Uvarov N V, Kudryavtsev Y V, Kravets A F, ,
CrossRef
Google scholar
|
[32] |
Bainsla L, Yilgin R, Okabayashi J, ,
CrossRef
Google scholar
|
[33] |
Asvini V, Saravanan G, Kalaiezhily R K, ,
CrossRef
Google scholar
|
[34] |
Yamada S, Kobayashi S, Kuroda F, ,
CrossRef
Google scholar
|
[35] |
Jin Y, Kharel P, Valloppilly S R, ,
CrossRef
Google scholar
|
[36] |
Safeer A, Ahmad N, Khan S, ,
CrossRef
Google scholar
|
[37] |
Khan S, Ahmad N, Ahmed N, ,
CrossRef
Google scholar
|
[38] |
Khan S, Ahmad N, Ahmed N, ,
CrossRef
Google scholar
|
[39] |
Simon P, Wolf D, Wang C, ,
CrossRef
Pubmed
Google scholar
|
[40] |
Sharma M, Das A, Kuanr B K . Co-based full Heusler alloy nanowires: modulation of static and dynamic properties through deposition parameters. AIP Advances, 2019, 9( 12): 125054
CrossRef
Google scholar
|
[41] |
Javed K, Zhang X M, Parajuli S, ,
CrossRef
Google scholar
|
[42] |
Sapkota K R, Gyawali P, Forbes A, ,
CrossRef
Google scholar
|
[43] |
Lu H X, Liu Y C, Kou X L . Communication-electrodeposition, microstructure and magnetic properties of Co2FeSn Heusler alloy nanowires. Journal of the Electrochemical Society, 2018, 165( 16): D813– D815
CrossRef
Google scholar
|
[44] |
Li Y H, Kou X L, Hou N . Synthesis, microstructure and magnetic properties of Fe2CoAl nanofibers. Functional Materials Letters, 2017, 10( 4): 1750035
CrossRef
Google scholar
|
[45] |
Wu Y, Kou X L, Huang J J . Fabrication and magnetic properties of electrospun Fe2NiGa nanofibers. Materials Express, 2018, 8( 4): 375– 380
CrossRef
Google scholar
|
[46] |
Seo K, Bagkar N, Kim S I, ,
CrossRef
Pubmed
Google scholar
|
[47] |
Zhao W Q, Dai X F, Zhang X M, ,
CrossRef
Pubmed
Google scholar
|
[48] |
Li J, Chen H, Li Y, ,
CrossRef
Google scholar
|
[49] |
Gao G Y, Yao K L . Antiferromagnetic half-metals, gapless half-metals, and spin gapless semiconductors: the D03-type Heusler alloys. Applied Physics Letters, 2013, 103( 23): 232409
CrossRef
Google scholar
|
[50] |
Galanakis I, Dederichs P H, Papanikolaou N . Slater‒Pauling behavior and origin of the half-metallicity of the full-Heusler alloys. Physical Review B: Condensed Matter, 2002, 66( 17): 174429
CrossRef
Google scholar
|
/
〈 | 〉 |