Ammonia borane-based reactive mixture for trapping and converting carbon dioxide

Carlos A. CASTILLA-MARTINEZ , Bilge COŞKUNER FİLİZ , Eddy PETIT , Aysel KANTÜRK FİGEN , Umit B. DEMIRCI

Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (2) : 220610

PDF (24922KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (2) : 220610 DOI: 10.1007/s11706-022-0610-z
RESEARCH ARTICLE
RESEARCH ARTICLE

Ammonia borane-based reactive mixture for trapping and converting carbon dioxide

Author information +
History +
PDF (24922KB)

Abstract

Ammonia borane (NH3BH3) is a reducing agent, able to trap and convert carbon dioxide. In the present work, we used a reactive solid consisting of a mixture of 90 wt.% of NH3BH3 and 10 wt.% of palladium chloride, because the mixture reacts in a fast and exothermic way while releasing H2 and generating catalytic Pd0. We took advantage of such reactivity to trap and convert CO2 (7 bar), knowing besides that Pd0 is a CO2 hydrogenation catalyst. The operation (i.e. stage 1) was effective: BNH polymers, and B−O, C=O, C−O, and C−H bonds (like in BOCH3 and BOOCH groups) were identified. We then (in stage 2) pyrolyzed the as-obtained solid at 1250 °C and washed it with water. In doing so, we isolated cyclotriboric acid H3B3O6 (stemming from B2O3 formed at 1250 °C), hexagonal boron nitride, and graphitic carbon. In conclusion, the stage 1 showed that CO2 can be ‘trapped’ and converted, resulting in the formation of BOCH3 and BOOCH groups (possible sources of methanol and formic acid), and the stage 2 showed that CO2 transforms into graphitic carbon.

Graphical abstract

Keywords

ammonia borane / boron nitride / boron oxide / carbon dioxide / graphitic carbon

Cite this article

Download citation ▾
Carlos A. CASTILLA-MARTINEZ, Bilge COŞKUNER FİLİZ, Eddy PETIT, Aysel KANTÜRK FİGEN, Umit B. DEMIRCI. Ammonia borane-based reactive mixture for trapping and converting carbon dioxide. Front. Mater. Sci., 2022, 16(2): 220610 DOI:10.1007/s11706-022-0610-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bonneuil C, Choquet P L, Franta B . Early warnings and emerging accountability: total’s responses to global warming, 1971‒2021. Global Environmental Change, 2021, 71 : 102386

[2]

Krishnan J N U, Jakka S C B . Carbon dioxide: no longer a global menace: a future source for chemicals. Materials Today: Proceedings, 2022, 58 : 812– 822

[3]

Zoelle A, McIlvried H. Enthalpy and free energy of CO2 utilization pathways . National Energy Technology Laboratory; Released April 26, 2017; reference DOE/NETL-2017/1849. Available at accessed November 9, 2021)

[4]

Franz D, Jandl C, Stark C, , . Catalytic CO2 reduction with boron- and aluminum hydrides. ChemCatChem, 2019, 11( 21): 5275– 5281

[5]

Ra E C, Kim K Y, Kim E H, , . Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catalysis, 2020, 10( 19): 11318– 11345

[6]

Boutin E, Robert M . Molecular electrochemical reduction of CO2 beyond two electrons. Trends in Chemistry, 2021, 3( 5): 359– 372

[7]

Variar A G, Ramyashree M S, Ail V U, , . Influence of various operational parameters in enhancing photocatalytic reduction efficiency of carbon dioxide in a photoreactor: a review. Journal of Industrial and Engineering Chemistry, 2021, 99 : 19– 47

[8]

Kumaravel V, Bartlett J, Pillai S C . Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Letters, 2020, 5( 2): 486– 519

[9]

Burr J G Jr, Brown W G, Heller H E . The reduction of carbon dioxide to formic acid. Journal of the American Chemical Society, 1950, 72( 6): 2560– 2562

[10]

Wartik T, Pearson R K . Reactions of carbon dioxide with sodium and lithium borohydrides. Journal of Inorganic and Nuclear Chemistry, 1958, 7( 4): 404– 411

[11]

Knopf I, Cummins C C . Revisiting CO2 reduction with NaBH4 under aprotic conditions: synthesis and characterization of sodium triformatoborohydride. Organometallics, 2015, 34( 9): 1601– 1603

[12]

Dovgaliuk I, Hagemann H, Leyssens T, , . CO2-promoted hydrolysis of KBH4 for efficient hydrogen co-generation. International Journal of Hydrogen Energy, 2014, 39( 34): 19603– 19608

[13]

Fletcher C, Jiang Y, Amal R . Production of formic acid from CO2 reduction by means of potassium borohydride at ambient conditions. Chemical Engineering Science, 2015, 137 : 301– 307

[14]

Zhao Y, Zhang Z, Qian X, , . Properties of carbon dioxide absorption and reduction by sodium borohydride under atmospheric pressure. Fuel, 2015, 142 : 1– 8

[15]

Grice K A, Groenenboom M C, Manuel J D A, , . Examining the selectivity of borohydride for carbon dioxide and bicarbonate reduction in protic conditions. Fuel, 2015, 150 : 139– 145

[16]

Zhu W, Zhao J, Wang L, , . Mechanochemical reactions of alkali borohydride with CO2 under ambient temperature. Journal of Solid State Chemistry, 2019, 277 : 828– 832

[17]

Picasso C V, Safin D A, Dovgaliuk I, , . Reduction of CO2 with KBH4 in solvent-free conditions. International Journal of Hydrogen Energy, 2016, 41( 32): 14377– 14386

[18]

Kadota K, Sivaniah E, Horike S . Reactivity of borohydride incorporated in coordination polymers toward carbon dioxide. Chemical Communications, 2020, 56( 38): 5111– 5114

[19]

Lombardo L, Yang H, Zhao K, , . Solvent- and catalyst-free carbon dioxide trap and reduction to formate with borohydride ionic liquid. ChemSusChem, 2020, 13( 8): 2025– 2031

[20]

Lombardo L, Ko Y, Zhao K, , . Direct CO2 capture and reduction to high-end chemicals with tetraalkylammonium borohydrides. Angewandte Chemie International Edition in English, 2021, 60( 17): 9580– 9589

[21]

Ménard G, Stephan D W . Room temperature reduction of CO2 to methanol by Al-based frustrated Lewis pairs and ammonia borane. Journal of the American Chemical Society, 2010, 132( 6): 1796– 1797

[22]

Roy L, Zimmerman P M, Paul A . Changing lanes from concerted to stepwise hydrogenation: the reduction mechanism of frustrated Lewis acid-base pair trapped CO2 to methanol by ammonia-borane. Chemistry: A European Journal, 2011, 17( 2): 435– 439

[23]

Zeng G, Maeda S, Taketsugu T, , . Catalytic hydrogenation of carbon dioxide with ammonia-borane by pincer-type phosphorus compounds: theoretical prediction. Journal of the American Chemical Society, 2016, 138( 41): 13481– 13484

[24]

Kumar A, Eyyathiyil J, Choudhury J . Reduction of carbon dioxide with ammonia-borane under ambient conditions: maneuvering a catalytic way. Inorganic Chemistry, 2021, 60( 15): 11684– 11692

[25]

Zhao T, Li C, Hu X, , . Base-assisted transfer hydrogenation of CO2 to formate with ammonia borane in water under mild conditions. International Journal of Hydrogen Energy, 2021, 46( 29): 15716– 15723

[26]

Zhang J, Zhao Y, Akins D L, , . CO2-enhanced thermolytic H2 release from ammonia borane. The Journal of Physical Chemistry C, 2011, 115( 16): 8386– 8392

[27]

Xiong R, Zhang J, Zhao Y, , . Rapid release of 1.5 equivalents of hydrogen from CO2-treated ammonia borane. International Journal of Hydrogen Energy, 2012, 37( 4): 3344– 3349

[28]

Zhang J, Zhao Y, Guan X, , . Formation of graphene oxide nanocomposites from carbon dioxide using ammonia borane. The Journal of Physical Chemistry C, 2012, 116( 3): 2639– 2644

[29]

Toche F, Chiriac R, Demirci U B, , . Ammonia borane thermolytic decomposition in the presence of metal(II) chlorides. International Journal of Hydrogen Energy, 2012, 37( 8): 6749– 6755

[30]

Bahruji H, Bowker M, Hutchings G, , . Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. Journal of Catalysis, 2016, 343 : 133– 146

[31]

Petit J F, Dib E, Gaveau P, , . 11B MAS NMR study of the thermolytic dehydrocoupling of two ammonia boranes upon the release of one equivalent of H2 at isothermal conditions. ChemistrySelect, 2017, 2( 29): 9396– 9401

[32]

Łodziana Z, Błoński P, Yan Y, , . NMR chemical shifts of 11B in metal borohydrides from first-principle calculations. The Journal of Physical Chemistry C, 2014, 118( 13): 6594– 6603

[33]

Roy B, Pal U, Bishnoi A, , . Exploring the homopolar dehydrocoupling of ammonia borane by solid-state multinuclear NMR spectroscopy. Chemical Communications, 2021, 57( 15): 1887– 1890

[34]

Bowden M, Autrey T, Brown I, , . The thermal decomposition of ammonia borane: a potential hydrogen storage material. Current Applied Physics, 2008, 8( 3‒4): 498– 500

[35]

NIST X-ray Photoelectron Spectroscopy (XPS) Database. Available at accessed March 19, 2022)

[36]

Gouin X, Grange P, Bois L, , . Characterization of the nitridation process of boric acid. Journal of Alloys and Compounds, 1995, 224( 1): 22– 28

[37]

Bachmann P, Düll F, Späth F, , . A HR-XPS study of the formation of h-BN on Ni(1 1 1) from the two precursors, ammonia borane and borazine. The Journal of Chemical Physics, 2018, 149( 16): 164709

[38]

Zhao J, Shi J, Zhang X, , . A soft hydrogen storage material: poly(methyl acrylate)-confined ammonia borane with controllable dehydrogenation. Advanced Materials, 2010, 22( 3): 394– 397

[39]

Bresnehan M S, Hollander M J, Wetherington M, , . Prospects of direct growth boron nitride films as substrates for graphene electronics. Journal of Materials Research, 2014, 29( 3): 459– 471

[40]

Qiao L, Li Q, Zhou Z, , . Inert can be advantageous: advisable reconstruction and application of palladium chloride for the preferential oxidation of the hydrogen impurity in carbon monoxide streams. ChemCatChem, 2016, 8( 11): 1909– 1914

[41]

Mel’nikov N I, Peregood D P, Zhitnikov R A . Investigation of silver centres in glassy B2O3. Journal of Non-Crystalline Solids, 1974, 16( 2): 195– 205

[42]

Zhou F, Xu D, Shi M, , . Investigation on microstructure and its transformation mechanisms of B2O3‒SiO2‒Al2O3‒CaO brazing flux system. High-Temperature Materials and Processes, 2020, 39( 1): 88– 95

[43]

Chen L, Xu H F, He S J, , . Thermal conductivity performance of polypropylene composites filled with polydopamine-functionalized hexagonal boron nitride. PLoS One, 2017, 12( 1): e0170523

[44]

Lee E S, Park J K, Lee W S, , . Effect of deposition temperature on cubic boron nitride thin film deposited by unbalanced magnetron sputtering method with a nanocrystalline diamond buffer layer. Metals and Materials International, 2013, 19( 6): 1323– 1326

[45]

Rao L S, Rao P V, Sharma M V N V D, , . J-O parameters versus photoluminescence characteristics of 40Li2O‒4MO (MO = Nb2O5, MoO3 and WO3)‒55B2O3:1Nd2O3 glass systems. Optik, 2017, 142 : 674– 681

[46]

Krishnan K . The Raman spectra of boric acid. Proceedings of the Indian Academy of Sciences Section A: Physical Sciences, 1963, 57( 2): 103– 108

[47]

Yamauchi S, Doi S . Raman spectroscopic study on the behavior of boric acid in wood. Journal of Wood Science, 2003, 49( 3): 227– 234

[48]

Tuinstra F, Koenig J L . Raman spectrum of graphite. The Journal of Chemical Physics, 1970, 53( 3): 1126– 1130

[49]

Arenal R, Ferrari A C, Reich S, , . Raman spectroscopy of single-wall boron nitride nanotubes. Nano Letters, 2006, 6( 8): 1812– 1816

[50]

Tatykaev B B, Burkitbayev M M, Uralbekov B M, , . Mechanochemical synthesis of silver chloride nanoparticles by a dilution method in the system NH4Cl‒AgNO3‒NH4NO3. Acta Physica Polonica A, 2014, 126( 4): 1044– 1048

[51]

Kalidindi S B, Sanyal U, Jagirdar B R . Metal nanoparticles via the atom-economy green approach. Inorganic Chemistry, 2010, 49( 9): 3965– 3967

[52]

Chen W, Yu H, Wu G, , . Ammonium aminodiboranate: a long-sought isomer of diammoniate of diborane and ammonia borane dimer. Chemistry: A European Journal, 2016, 22( 23): 7727– 7729

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (24922KB)

Supplementary files

FMS-22610-OF-CMca_suppl_1

1053

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/