SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature

Pengtao WANG , Wanyin GE , Xiaohua JIA , Jingtao HUANG , Xinmeng ZHANG , Jing LU

Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220609

PDF (2964KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220609 DOI: 10.1007/s11706-022-0609-5
RESEARCH ARTICLE
RESEARCH ARTICLE

SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature

Author information +
History +
PDF (2964KB)

Abstract

The SnO2-based family is a traditional but important gas-sensitive material. However, the requirement for high working temperature limits its practical application. Much work has been done to explore ways to improve its gas-sensing performance at room temperature (RT). For this report, SnO2, SnO, and SnO/SnO2 heterojunction was successfully synthesized by a facile hydrothermal combined with subsequent calcination. Pure SnO2 requires a high operating temperature (145 °C), while SnO/SnO2 heterojunction exhibits an excellent performance for sensing NO2 at RT. Moreover, SnO/SnO2 exhibits a fast response, of 32 s, to 50 ppm NO2 at RT (27 °C), which is much faster than that of SnO (139 s). The superior sensing properties of SnO/SnO2 heterojunction are attributed to the unique hierarchical structures, large number of adsorption sites, and enhanced electron transport. Our results show that SnO/SnO2 heterojunction can be used as a promising high-performance NO2 sensitive material at RT.

Graphical abstract

Keywords

SnO / SnO2 / heterostructure / NO2 / room temperature

Cite this article

Download citation ▾
Pengtao WANG, Wanyin GE, Xiaohua JIA, Jingtao HUANG, Xinmeng ZHANG, Jing LU. SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature. Front. Mater. Sci., 2022, 16(3): 220609 DOI:10.1007/s11706-022-0609-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yan Y, Krishnakumar S, Yu H, , . Nickel(II) dithiocarbamate complexes containing sulforhodamine B as fluorescent probes for selective detection of nitrogen dioxide. Journal of the American Chemical Society, 2013, 135( 14): 5312– 5315

[2]

Yan C, Lu H, Gao J, , . Improved NO2 sensing properties at low temperature using reduced graphene oxide nanosheet–In2O3 heterojunction nanofibers. Journal of Alloys and Compounds, 2018, 741 : 908– 917

[3]

Martinelli G, Carotta M C, Ferroni M, , . Screen-printed perovskite-type thick films as gas sensors for environmental monitoring. Sensors and Actuators B: Chemical, 1999, 55( 2–3): 99– 110

[4]

Jeong H S, Park M J, Kwon S H, , . Low temperature NO2 sensing properties of RF-sputtered SnO–SnO2 heterojunction thin-film with p-type semiconducting behavior. Ceramics International, 2018, 44( 14): 17283– 17289

[5]

Ou J Z, Ge W, Carey B, , . Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano, 2015, 9( 10): 10313– 10323

[6]

Choi M S, Mirzaei A, Na H G, , . Facile and fast decoration of SnO2 nanowires with Pd embedded SnO2−x nanoparticles for selective NO2 gas sensing. Sensors and Actuators B: Chemical, 2021, 340 : 129984

[7]

Yang Z, Jiang L, Wang J, , . Flexible resistive NO2 gas sensor of three-dimensional crumpled MXene Ti3C2Tx/ZnO spheres for room temperature application. Sensors and Actuators B: Chemical, 2021, 326 : 128828

[8]

Umar A, Ammar H Y, Kumar R, , . Square disks-based crossed architectures of SnO2 for ethanol gas sensing applications ― an experimental and theoretical investigation. Sensors and Actuators B: Chemical, 2020, 304 : 127352

[9]

Isaac N A, Valenti M, Schmidt-Ott A, , . Characterization of tungsten oxide thin films produced by spark ablation for NO2 gas sensing. ACS Applied Materials & Interfaces, 2016, 8( 6): 3933– 3939

[10]

Hien V X, Heo Y W . Effects of violet-, green-, and red-laser illumination on gas-sensing properties of SnO thin film. Sensors and Actuators B: Chemical, 2016, 228 : 185– 191

[11]

Hübner M, Simion C E, Tomescu-Stănoiu A, , . Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sensors and Actuators B: Chemical, 2011, 153( 2): 347– 353

[12]

Du W, Si W, Du W, , . Unraveling the promoted nitrogen dioxide detection performance of N-doped SnO2 microspheres at low temperature. Journal of Alloys and Compounds, 2020, 834 : 155209

[13]

Liu J Y, Wang C, Yang Q Y, , . Hydrothermal synthesis and gas-sensing properties of flower-like Sn3O4. Sensors and Actuators B: Chemical, 2016, 224 : 128– 133

[14]

Suman P H, Felix A A, Tuller H L, , . Giant chemo-resistance of SnO disk-like structures. Sensors and Actuators B: Chemical, 2013, 186 : 103– 108

[15]

Ren Q Q, Zhang X P, Wang Y N, , . Shape-controlled and stable hollow frame structures of SnO and their highly sensitive NO2 gas sensing. Sensors and Actuators B: Chemical, 2021, 340 : 129940

[16]

Rezalou S T, Oznuluer T, Demir U . One-pot electrochemical fabrication of single-crystalline SnO nanostructures on Si and ITO substrates for catalytic, sensor and energy storage applications. Applied Surface Science, 2018, 448 : 510– 521

[17]

Li W T, Zhang X D, Guo X . Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sensors and Actuators B: Chemical, 2017, 244 : 509– 521

[18]

Chu X F, Zhu X H, Dong Y P, , . Formaldehyde sensing properties of SnO–graphene composites prepared via hydrothermal method. Journal of Materials Science and Technology, 2015, 31( 9): 913– 917

[19]

Meng L L, Bu W Y, Li Y, , . Highly selective triethylamine sensing based on SnO/SnO2 nanocomposite synthesized by one-step solvothermal process and sintering. Sensors and Actuators B: Chemical, 2021, 342 : 130018

[20]

Li L, Zhang C, Chen W . Fabrication of SnO2–SnO nanocomposites with p–n heterojunctions for the low-temperature sensing of NO2 gas. Nanoscale, 2015, 7( 28): 12133– 12142

[21]

Yu H, Yang T Y, Wang Z Y, , . p-N heterostructural sensor with SnO–SnO2 for fast NO2 sensing response properties at room temperature. Sensors and Actuators B: Chemical, 2018, 258 : 517– 526

[22]

Zhang L, Tong R B, Ge W Y, , . Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor. Journal of Alloys and Compounds, 2020, 814 : 152266

[23]

Ge W, Jiao S, Chang Z, , . Ultrafast response and high selectivity toward acetone vapor using hierarchical structured TiO2 nanosheets. ACS Applied Materials & Interfaces, 2020, 12( 11): 13200– 13207

[24]

Wang B J, Ma S Y, Pei S T, , . High specific surface area SnO2 prepared by calcining Sn-MOFs and their formaldehyde-sensing characteristics. Sensors and Actuators B: Chemical, 2020, 321 : 128560

[25]

Liu C, Lu H B, Zhang J N, , . Crystal facet-dependent p-type and n-type sensing responses of TiO2 nanocrystals. Sensors and Actuators B: Chemical, 2018, 263 : 557– 567

[26]

Deng S, Tjoa V, Fan H M, , . Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. Journal of the American Chemical Society, 2012, 134( 10): 4905– 4917

[27]

Kwon Y J, Kang S Y, Wu P, , . Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Applied Materials & Interfaces, 2016, 8( 21): 13646– 13658

[28]

Xu M Z, Yu R W, Guo Y X, , . New strategy towards the assembly of hierarchical heterostructures of SnO2/ZnO for NO2 detection at a ppb level. Inorganic Chemistry Frontiers, 2019, 6( 10): 2801– 2809

[29]

Gu D, Li X G, Zhao Y Y, , . Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sensors and Actuators B: Chemical, 2017, 244 : 67– 76

[30]

Kim H W, Na H G, Kwon Y J, , . Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Applied Materials & Interfaces, 2017, 9( 37): 31667– 31682

[31]

Yang B X, Myung N V, Tran T T . 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review. Advanced Electronic Materials, 2021, 7( 9): 2100271

[32]

Zhou L, Hu Z, Li H Y, , . Template-free construction of tin oxide porous hollow microspheres for room-temperature gas sensors. ACS Applied Materials & Interfaces, 2021, 13( 21): 25111– 25120

[33]

Choi M S, Na H G, Bang J H, , . SnO2 nanowires decorated by insulating amorphous carbon layers for improved room-temperature NO2 sensing. Sensors and Actuators B: Chemical, 2021, 326 : 128801

[34]

Zhao S K, Shen Y B, Zhou P F, , . Enhanced NO2 sensing performance of ZnO nanowires functionalized with ultra-fine In2O3 nanoparticles. Sensors and Actuators B: Chemical, 2020, 308 : 127729

[35]

Suman P H, Felix A A, Tuller H L, , . Comparative gas sensor response of SnO2, SnO and Sn3O4 nanobelts to NO2 and potential interferents. Sensors and Actuators B: Chemical, 2015, 208 : 122– 127

[36]

Tôel K, Motomizu S, Kuse S . Naphthoquinonedioxime derivatives as analytical reagents for the spectrophotometric determination of nickel. Analytica Chimica Acta, 1975, 75( 2): 323– 334

[37]

Arghiropoulos B M . Electrical conductivity of pure and doped zinc oxides, catalysts of the hydrogenation of ethylene: I. Activation of the catalyst and adsorption of oxygen on pure zinc oxide. Journal of Catalysis, 1964, 3( 6): 477– 487

[38]

Chang S C . Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. Journal of Vacuum Science and Technology, 1980, 17( 1): 366– 369

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (2964KB)

Supplementary files

FMS-22609-OF-Wpt_suppl_1

1474

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/