
SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature
Pengtao WANG, Wanyin GE, Xiaohua JIA, Jingtao HUANG, Xinmeng ZHANG, Jing LU
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220609.
SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature
The SnO2-based family is a traditional but important gas-sensitive material. However, the requirement for high working temperature limits its practical application. Much work has been done to explore ways to improve its gas-sensing performance at room temperature (RT). For this report, SnO2, SnO, and SnO/SnO2 heterojunction was successfully synthesized by a facile hydrothermal combined with subsequent calcination. Pure SnO2 requires a high operating temperature (145 °C), while SnO/SnO2 heterojunction exhibits an excellent performance for sensing NO2 at RT. Moreover, SnO/SnO2 exhibits a fast response, of 32 s, to 50 ppm NO2 at RT (27 °C), which is much faster than that of SnO (139 s). The superior sensing properties of SnO/SnO2 heterojunction are attributed to the unique hierarchical structures, large number of adsorption sites, and enhanced electron transport. Our results show that SnO/SnO2 heterojunction can be used as a promising high-performance NO2 sensitive material at RT.
SnO / SnO2 / heterostructure / NO2 / room temperature
[1] |
Yan Y, Krishnakumar S, Yu H, ,
CrossRef
Pubmed
Google scholar
|
[2] |
Yan C, Lu H, Gao J, ,
CrossRef
Google scholar
|
[3] |
Martinelli G, Carotta M C, Ferroni M, ,
CrossRef
Google scholar
|
[4] |
Jeong H S, Park M J, Kwon S H, ,
CrossRef
Google scholar
|
[5] |
Ou J Z, Ge W, Carey B, ,
CrossRef
Pubmed
Google scholar
|
[6] |
Choi M S, Mirzaei A, Na H G, ,
CrossRef
Google scholar
|
[7] |
Yang Z, Jiang L, Wang J, ,
CrossRef
Google scholar
|
[8] |
Umar A, Ammar H Y, Kumar R, ,
CrossRef
Google scholar
|
[9] |
Isaac N A, Valenti M, Schmidt-Ott A, ,
CrossRef
Pubmed
Google scholar
|
[10] |
Hien V X, Heo Y W . Effects of violet-, green-, and red-laser illumination on gas-sensing properties of SnO thin film. Sensors and Actuators B: Chemical, 2016, 228 : 185– 191
CrossRef
Google scholar
|
[11] |
Hübner M, Simion C E, Tomescu-Stănoiu A, ,
CrossRef
Google scholar
|
[12] |
Du W, Si W, Du W, ,
CrossRef
Google scholar
|
[13] |
Liu J Y, Wang C, Yang Q Y, ,
CrossRef
Google scholar
|
[14] |
Suman P H, Felix A A, Tuller H L, ,
CrossRef
Google scholar
|
[15] |
Ren Q Q, Zhang X P, Wang Y N, ,
CrossRef
Google scholar
|
[16] |
Rezalou S T, Oznuluer T, Demir U . One-pot electrochemical fabrication of single-crystalline SnO nanostructures on Si and ITO substrates for catalytic, sensor and energy storage applications. Applied Surface Science, 2018, 448 : 510– 521
CrossRef
Google scholar
|
[17] |
Li W T, Zhang X D, Guo X . Electrospun Ni-doped SnO2 nanofiber array for selective sensing of NO2. Sensors and Actuators B: Chemical, 2017, 244 : 509– 521
CrossRef
Google scholar
|
[18] |
Chu X F, Zhu X H, Dong Y P, ,
CrossRef
Google scholar
|
[19] |
Meng L L, Bu W Y, Li Y, ,
CrossRef
Google scholar
|
[20] |
Li L, Zhang C, Chen W . Fabrication of SnO2–SnO nanocomposites with p–n heterojunctions for the low-temperature sensing of NO2 gas. Nanoscale, 2015, 7( 28): 12133– 12142
CrossRef
Pubmed
Google scholar
|
[21] |
Yu H, Yang T Y, Wang Z Y, ,
CrossRef
Google scholar
|
[22] |
Zhang L, Tong R B, Ge W Y, ,
CrossRef
Google scholar
|
[23] |
Ge W, Jiao S, Chang Z, ,
CrossRef
Pubmed
Google scholar
|
[24] |
Wang B J, Ma S Y, Pei S T, ,
CrossRef
Google scholar
|
[25] |
Liu C, Lu H B, Zhang J N, ,
CrossRef
Google scholar
|
[26] |
Deng S, Tjoa V, Fan H M, ,
CrossRef
Pubmed
Google scholar
|
[27] |
Kwon Y J, Kang S Y, Wu P, ,
CrossRef
Pubmed
Google scholar
|
[28] |
Xu M Z, Yu R W, Guo Y X, ,
CrossRef
Google scholar
|
[29] |
Gu D, Li X G, Zhao Y Y, ,
CrossRef
Google scholar
|
[30] |
Kim H W, Na H G, Kwon Y J, ,
CrossRef
Pubmed
Google scholar
|
[31] |
Yang B X, Myung N V, Tran T T . 1D metal oxide semiconductor materials for chemiresistive gas sensors: a review. Advanced Electronic Materials, 2021, 7( 9): 2100271
CrossRef
Google scholar
|
[32] |
Zhou L, Hu Z, Li H Y, ,
CrossRef
Pubmed
Google scholar
|
[33] |
Choi M S, Na H G, Bang J H, ,
CrossRef
Google scholar
|
[34] |
Zhao S K, Shen Y B, Zhou P F, ,
CrossRef
Google scholar
|
[35] |
Suman P H, Felix A A, Tuller H L, ,
CrossRef
Google scholar
|
[36] |
Tôel K, Motomizu S, Kuse S . Naphthoquinonedioxime derivatives as analytical reagents for the spectrophotometric determination of nickel. Analytica Chimica Acta, 1975, 75( 2): 323– 334
CrossRef
Google scholar
|
[37] |
Arghiropoulos B M . Electrical conductivity of pure and doped zinc oxides, catalysts of the hydrogenation of ethylene: I. Activation of the catalyst and adsorption of oxygen on pure zinc oxide. Journal of Catalysis, 1964, 3( 6): 477– 487
CrossRef
Google scholar
|
[38] |
Chang S C . Oxygen chemisorption on tin oxide: correlation between electrical conductivity and EPR measurements. Journal of Vacuum Science and Technology, 1980, 17( 1): 366– 369
CrossRef
Google scholar
|
/
〈 |
|
〉 |