SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature
Pengtao WANG , Wanyin GE , Xiaohua JIA , Jingtao HUANG , Xinmeng ZHANG , Jing LU
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220609
SnO/SnO2 heterojunction: an alternative candidate for sensing NO2 with fast response at room temperature
The SnO2-based family is a traditional but important gas-sensitive material. However, the requirement for high working temperature limits its practical application. Much work has been done to explore ways to improve its gas-sensing performance at room temperature (RT). For this report, SnO2, SnO, and SnO/SnO2 heterojunction was successfully synthesized by a facile hydrothermal combined with subsequent calcination. Pure SnO2 requires a high operating temperature (145 °C), while SnO/SnO2 heterojunction exhibits an excellent performance for sensing NO2 at RT. Moreover, SnO/SnO2 exhibits a fast response, of 32 s, to 50 ppm NO2 at RT (27 °C), which is much faster than that of SnO (139 s). The superior sensing properties of SnO/SnO2 heterojunction are attributed to the unique hierarchical structures, large number of adsorption sites, and enhanced electron transport. Our results show that SnO/SnO2 heterojunction can be used as a promising high-performance NO2 sensitive material at RT.
SnO / SnO2 / heterostructure / NO2 / room temperature
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
Higher Education Press
Supplementary files
/
| 〈 |
|
〉 |