Nanoparticles embedded into glass matrices: glass nanocomposites
Javier FONSECA
Nanoparticles embedded into glass matrices: glass nanocomposites
Research on glass nanocomposites (GNCs) has been very active in the past decades. GNCs have attracted — and still do — great interest in the fields of optoelectronics, photonics, sensing, electrochemistry, catalysis, biomedicine, and art. In this review, the potential applications of GNCs in these fields are briefly described to show the reader the possibilities of these materials. The most important synthesis methods of GNCs (melt-quenching, sol-gel, ion implantation, ion-exchange, staining process, spark plasma sintering, radio frequency sputtering, spray pyrolysis, and chemical vapor deposition techniques) are extensively explained. The major aim of this review is to systematize our knowledge about the synthesis of GNCs and to explore the mechanisms of formation and growth of NPs within glass matrices. The size-controlled preparation of NPs within glass matrices, which remains a challenge, is essential for advanced applications. Therefore, a thorough understanding of GNC synthesis techniques is expected to facilitate the preparation of innovative GNCs.
glass nanocomposites / melt-quenching / sol-gel / ion implantation / ion-exchange
[1] |
Lee J, Mahendra S, Alvarez P J J . Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations.ACS Nano, 2010, 4(7): 3580–3590
CrossRef
Pubmed
Google scholar
|
[2] |
Yang Z, Ren J, Zhang Z, ,
CrossRef
Pubmed
Google scholar
|
[3] |
Aricò A S, Bruce P, Scrosati B, ,
CrossRef
Pubmed
Google scholar
|
[4] |
Sanchez F, Sobolev K . Nanotechnology in concrete — a review.Construction and Building Materials, 2010, 24(11): 2060–2071
CrossRef
Google scholar
|
[5] |
Shang L, Bian T, Zhang B, ,
CrossRef
Pubmed
Google scholar
|
[6] |
Yuan Q, Duan H H, Li L L, ,
CrossRef
Pubmed
Google scholar
|
[7] |
Ohko Y, Tatsuma T, Fujii T, ,
CrossRef
Pubmed
Google scholar
|
[8] |
Lykhach Y, Staudt T, Tsud N, ,
CrossRef
Pubmed
Google scholar
|
[9] |
Mitra A, De G . Chapter 6: Sol-gel synthesis of metal nanoparticle incorporated oxide films on glass.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 145–163
|
[10] |
Fonseca J, Lu J . Single-atom catalysts designed and prepared by the atomic layer deposition technique.ACS Catalysis, 2021, 11(12): 7018–7059
CrossRef
Google scholar
|
[11] |
Karmakar B . Chapter 1: Fundamentals of glass and glass nanocomposites.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 3–53
|
[12] |
Zanotto E D, Mauro J C . The glassy state of matter: its definition and ultimate fate.Journal of Non-Crystalline Solids, 2017, 471: 490–495
CrossRef
Google scholar
|
[13] |
Fonseca J, Gong T, Jiao L, ,
CrossRef
Google scholar
|
[14] |
Xiang W, Gao H, Ma L, ,
CrossRef
Pubmed
Google scholar
|
[15] |
Zhong J, Xiang W, Chen Z, ,
CrossRef
Google scholar
|
[16] |
Chatterjee S, Saha S K, Chakravorty D . Chapter 2: Glass-based nanocomposites.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 57–88
|
[17] |
Amendola V, Pilot R, Frasconi M, ,
CrossRef
Pubmed
Google scholar
|
[18] |
Korgel B A . Materials science: composite for smarter windows.Nature, 2013, 500(7462): 278–279
CrossRef
Pubmed
Google scholar
|
[19] |
Mangin S, Gottwald M, Lambert C H, ,
CrossRef
Pubmed
Google scholar
|
[20] |
Llordés A, Garcia G, Gazquez J, ,
CrossRef
Pubmed
Google scholar
|
[21] |
Castro J M, Geraghty D F, West B R, ,
CrossRef
Pubmed
Google scholar
|
[22] |
Veasey D L, Funk D S, Peters P M, ,
CrossRef
Google scholar
|
[23] |
Tervonen A, West B R, Honkanen S K . Ion-exchanged glass waveguide technology: a review.Optical Engineering, 2011, 50(7): 071107
CrossRef
Google scholar
|
[24] |
Choi J, Bellec M, Royon A, ,
CrossRef
Pubmed
Google scholar
|
[25] |
Royon A, Bourhis K, Bellec M, ,
CrossRef
Pubmed
Google scholar
|
[26] |
Azlan M N, Hajer S S, Halimah M K, ,
CrossRef
Google scholar
|
[27] |
Oh Y J, Jeong K H . Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering.Advanced Materials, 2012, 24(17): 2234–2237
CrossRef
Pubmed
Google scholar
|
[28] |
Kurobori T, Nakamura S . A novel disk-type X-ray area imaging detector using radiophotoluminescence in silver-activated phosphate glass.Radiation Measurements, 2012, 47(10): 1009–1013
CrossRef
Google scholar
|
[29] |
Kato M, Chida K, Moritake T, ,
Pubmed
|
[30] |
Werner S, Navaridas J, Luján M . A survey on optical network-on-chip architectures.ACM Computing Surveys, 2017, 50(6): 1–37
CrossRef
Google scholar
|
[31] |
Heidt A M, Li Z, Sahu J, ,
CrossRef
Pubmed
Google scholar
|
[32] |
Li M, Huang S, Wang Q, ,
CrossRef
Pubmed
Google scholar
|
[33] |
Najafi S I, Lefebvre P, Albert J, ,
CrossRef
Pubmed
Google scholar
|
[34] |
Chakraborty P . Metal nanoclusters in glasses as non-linear photonic materials.Journal of Materials Science, 1998, 33(9): 2235–2249
CrossRef
Google scholar
|
[35] |
Haglund R F Jr . Ion implantation as a tool in the synthesis of practical third-order nonlinear optical materials.Materials Science and Engineering A, 1998, 253(1‒2): 275–283
CrossRef
Google scholar
|
[36] |
Weber M J, Milam D, Smith W L . Nonlinear refractive index of glasses and crystals.Optical Engineering, 1978, 17(5): 463–469
CrossRef
Google scholar
|
[37] |
Ryasnyansky A I, Palpant B, Debrus S, ,
CrossRef
Google scholar
|
[38] |
Chemla D S, Miller D A B . Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures.Journal of the Optical Society of America B, 1985, 2(7): 1155–1173
CrossRef
Google scholar
|
[39] |
Kawabata A, Kubo R . Electronic properties of fine metallic particles.II. Plasma resonance absorption. Journal of the Physical Society of Japan, 1966, 21(9): 1765–1772
CrossRef
Google scholar
|
[40] |
Halperin W P . Quantum size effects in metal particles.Reviews of Modern Physics, 1986, 58(3): 533–606
CrossRef
Google scholar
|
[41] |
Haglund R F Jr, Yang L, Magruder R H III, ,
CrossRef
Google scholar
|
[42] |
Garland J C, Tanner D B. Electrical Transport and Optical Properties of Inhomogeneous Media. New York, USA: American Institute of Physics, 1978
|
[43] |
Li Y Q, Sung C C, Inguva R, ,
CrossRef
Google scholar
|
[44] |
Hale D K . The physical properties of composite materials.Journal of Materials Science, 1976, 11(11): 2105–2141
CrossRef
Google scholar
|
[45] |
Haus J W, Kalyaniwalla N, Inguva R, ,
CrossRef
Google scholar
|
[46] |
Hou W, Cronin S B . A review of surface plasmon resonance-enhanced photocatalysis.Advanced Functional Materials, 2013, 23(13): 1612–1619
CrossRef
Google scholar
|
[47] |
Kabi S, Ghosh A . Structural investigation on silver phosphate glasses embedded with nanoparticles.Journal of Alloys and Compounds, 2012, 520: 238–243
CrossRef
Google scholar
|
[48] |
Wang Q Q, Han J B, Gong H M, ,
CrossRef
Google scholar
|
[49] |
Lin G, Pan H H, Qiu J R, ,
CrossRef
Google scholar
|
[50] |
Qu S, Zhang Y, Li H, ,
CrossRef
Google scholar
|
[51] |
Lin G, Tan D Z, Luo F F, ,
CrossRef
Google scholar
|
[52] |
Hache F, Ricard D, Flytzanis C . Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects.Journal of the Optical Society of America B, 1986, 3(12): 1647–1655
CrossRef
Google scholar
|
[53] |
Christensen N E, Seraphin B O . Relativistic band calculation and the optical properties of gold.Physical Review B, 1971, 4(10): 3321–3344
CrossRef
Google scholar
|
[54] |
Hache F, Ricard D, Flytzanis C, ,
|
[55] |
Liz-Marzán L M . Tailoring surface plasmons through the morphology and assembly of metal nanoparticles.Langmuir, 2006, 22(1): 32–41
CrossRef
Pubmed
Google scholar
|
[56] |
El-Sayed M A . Some interesting properties of metals confined in time and nanometer space of different shapes.Accounts of Chemical Research, 2001, 34(4): 257–264
CrossRef
Pubmed
Google scholar
|
[57] |
Link S, El-Sayed M A . Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals.International Reviews in Physical Chemistry, 2000, 19(3): 409–453
CrossRef
Google scholar
|
[58] |
Moores A, Goettmann F . The plasmon band in noble metal nanoparticles: an introduction to theory and applications.New Journal of Chemistry, 2006, 30(8): 1121–1132
CrossRef
Google scholar
|
[59] |
Jain P K, Lee K S, El-Sayed I H, ,
CrossRef
Pubmed
Google scholar
|
[60] |
Eustis S, El-Sayed M A . Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.Chemical Society Reviews, 2006, 35(3): 209–217
CrossRef
Pubmed
Google scholar
|
[61] |
De G, Medda S K, De S, ,
CrossRef
Google scholar
|
[62] |
Underwood S, Mulvaney P . Effect of the solution refractive index on the color of gold colloids.Langmuir, 1994, 10(10): 3427–3430
CrossRef
Google scholar
|
[63] |
Ghosh S K, Nath S, Kundu S, ,
CrossRef
Google scholar
|
[64] |
Rechberger W, Hohenau A, Leitner A, ,
CrossRef
Google scholar
|
[65] |
Jain P K, Qian W, El-Sayed M A . Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates.The Journal of Physical Chemistry B, 2006, 110(1): 136–142
CrossRef
Pubmed
Google scholar
|
[66] |
Su K H, Wei Q H, Zhang X, ,
CrossRef
Google scholar
|
[67] |
Jain P K, Eustis S, El-Sayed M A . Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.The Journal of Physical Chemistry B, 2006, 110(37): 18243–18253
CrossRef
Pubmed
Google scholar
|
[68] |
De S, De G . In-situ generation of Au nanoparticles in UV-curable refractive index controlled SiO2‒TiO2‒PEO hybrid films.The Journal of Physical Chemistry C, 2008, 112(28): 10378–10384
CrossRef
Google scholar
|
[69] |
Medda S K, Mitra M, De G . Tuning of Ag-SPR band position in refractive index controlled inorganic–organic hybrid SiO2–PEO–TiO2 films.Journal of Chemical Sciences, 2008, 120(6): 565–572
CrossRef
Google scholar
|
[70] |
Zhang J, Fu Y, Chowdhury M H, ,
CrossRef
Pubmed
Google scholar
|
[71] |
Zhang Y, Dragan A, Geddes C D . Wavelength dependence of metal-enhanced fluorescence.The Journal of Physical Chemistry C, 2009, 113(28): 12095–12100
CrossRef
Google scholar
|
[72] |
Zhang J, Fu Y, Chowdhury M H, ,
CrossRef
Pubmed
Google scholar
|
[73] |
Katsuaki T . Field enhancement around metal nanoparticles and nanoshells: a systematic investigation.The Journal of Physical Chemistry C, 2008, 112(40): 15721–15728
CrossRef
Google scholar
|
[74] |
Zhu J . Spatial dependence of the local field enhancement in dielectric shell coated silver nanospheres.Applied Surface Science, 2007, 253(21): 8729–8733
CrossRef
Google scholar
|
[75] |
Jupri S A, Ghoshal S K, Yusof N N, ,
CrossRef
Google scholar
|
[76] |
Sontakke A D, Biswas K, Annapurna K . Concentration-dependent luminescence of Tb3+ ions in high calcium aluminosilicate glasses.Journal of Luminescence, 2009, 129(11): 1347–1355
CrossRef
Google scholar
|
[77] |
Karunakaran R T, Marimuthu K, Surendra Babu S, ,
CrossRef
Google scholar
|
[78] |
Nageswara Raju C, Sailaja S, Hemasundara Raju S, ,
CrossRef
Google scholar
|
[79] |
Vařák P, Nekvindová P, Vytykáčová S, ,
CrossRef
Google scholar
|
[80] |
Canevali C, Mattoni M, Morazzoni F, ,
CrossRef
Pubmed
Google scholar
|
[81] |
Cao W, Huang F, Wang Z, ,
CrossRef
Pubmed
Google scholar
|
[82] |
Huang F, E F, Lei R, ,
CrossRef
Google scholar
|
[83] |
Vijayakumar R, Marimuthu K . Luminescence studies on Ag nanoparticles embedded Eu3+ doped boro-phosphate glasses.Journal of Alloys and Compounds, 2016, 665: 294–303
CrossRef
Google scholar
|
[84] |
Kamrádek M, Kašík I, Aubrecht J, ,
CrossRef
Google scholar
|
[85] |
Baker C C, Friebele E J, Burdett A A, ,
CrossRef
Pubmed
Google scholar
|
[86] |
Zhang W, Lin J, Cheng M, ,
CrossRef
Google scholar
|
[87] |
Meng S, Zhao G, Hou J, ,
CrossRef
Google scholar
|
[88] |
Sgibnev Y M, Nikonorov N V, Ignatiev A I . High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: influence of antimony content and heat treatment parameters.Journal of Luminescence, 2017, 188: 172–179
CrossRef
Google scholar
|
[89] |
Zmojda J, Miluski P, Kochanowicz M . Nanocomposite antimony-germanate-borate glass fibers doped with Eu3+ ions with self-assembling silver nanoparticles for photonic applications.Applied Sciences, 2018, 8(5): 790
CrossRef
Google scholar
|
[90] |
Fares H, Elhouichet H, Gelloz B, ,
CrossRef
Google scholar
|
[91] |
Kichanov S E, Kozlenko D P, Gorshkova Y E, ,
CrossRef
Google scholar
|
[92] |
Moskovits M . Surface-enhanced spectroscopy.Reviews of Modern Physics, 1985, 57(3): 783–826
CrossRef
Google scholar
|
[93] |
Nie S, Emory S R . Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.Science, 1997, 275(5303): 1102–1106
CrossRef
Pubmed
Google scholar
|
[94] |
Simo A, Joseph V, Fenger R, ,
CrossRef
Pubmed
Google scholar
|
[95] |
Haynes C L, McFarland A D, Van Duyne R P . Surface-enhanced Raman spectroscopy.Analytical Chemistry, 2005, 77(17): 338A–346A
CrossRef
Google scholar
|
[96] |
Schatz G C . Theoretical studies of surface enhanced Raman scattering.Accounts of Chemical Research, 1984, 17(10): 370–376
CrossRef
Google scholar
|
[97] |
Dousti M R, Sahar M R, Amjad R J, ,
CrossRef
Google scholar
|
[98] |
Moskovits M . Surface-enhanced Raman spectroscopy: a brief perspective.In: Kneipp K, Moskovits M, Kneipp H, eds. Surface-enhanced Raman scattering. Topics in Applied Physics. Berlin, Heidelberg: Springer, 2006, 103
|
[99] |
Campion A, Kambhampati P . Surface-enhanced Raman scattering.Chemical Society Reviews, 1998, 27(4): 241–250
CrossRef
Google scholar
|
[100] |
Qian X M, Nie S M . Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.Chemical Society Reviews, 2008, 37(5): 912–920
CrossRef
Pubmed
Google scholar
|
[101] |
Fleischmann M, Hendra P J, McQuillan A J . Raman spectra of pyridine adsorbed at a silver electrode.Chemical Physics Letters, 1974, 26(2): 163–166
CrossRef
Google scholar
|
[102] |
Liu D, Chen X, Hu Y, ,
CrossRef
Pubmed
Google scholar
|
[103] |
Kneipp J, Kneipp H, Kneipp K . SERS — a single-molecule and nanoscale tool for bioanalytics.Chemical Society Reviews, 2008, 37(5): 1052–1060
CrossRef
Pubmed
Google scholar
|
[104] |
Wells S M, Retterer S D, Oran J M, ,
CrossRef
Pubmed
Google scholar
|
[105] |
Wang H, Levin C S, Halas N J . Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates.Journal of the American Chemical Society, 2005, 127(43): 14992–14993
CrossRef
Pubmed
Google scholar
|
[106] |
Pal P, Bonyár A, Veres M, ,
CrossRef
Google scholar
|
[107] |
Chou C M, Thanh Thi L T, Quynh Nhu N T, ,
CrossRef
Google scholar
|
[108] |
Yahata A, Ishii H, Nakamura K, ,
CrossRef
Google scholar
|
[109] |
Belusso L C S, Lenz G F, Fiorini E E, ,
CrossRef
Google scholar
|
[110] |
Goodenough J B, Braga M H . Batteries for electric road vehicles.Dalton Transactions, 2018, 47(3): 645–648
CrossRef
Pubmed
Google scholar
|
[111] |
Braga M H, Grundish N S, Murchison A J, ,
CrossRef
Google scholar
|
[112] |
Mikolajczak C, Kahn M, White K, ,
|
[113] |
Braga M H, Murchison A J, Ferreira J A, ,
CrossRef
Google scholar
|
[114] |
Kamaya N, Homma K, Yamakawa Y, ,
CrossRef
Pubmed
Google scholar
|
[115] |
Duclot M, Souquet J L . Glassy materials for lithium batteries: electrochemical properties and devices performances.Journal of Power Sources, 2001, 97‒98: 610–615
CrossRef
Google scholar
|
[116] |
Janek J, Zeier W G . A solid future for battery development.Nature Energy, 2016, 1(9): 16141
CrossRef
Google scholar
|
[117] |
Manuel Stephan A, Nahm K S . Review on composite polymer electrolytes for lithium batteries.Polymer, 2006, 47(16): 5952–5964
CrossRef
Google scholar
|
[118] |
Munshi M Z A. Handbook of Solid State Batteries and Capacitors. Singapore: World Scientific, 1995
|
[119] |
Troy S, Schreiber A, Reppert T, ,
CrossRef
Google scholar
|
[120] |
Mohamed E A, Nabhan E, Ratep A, ,
CrossRef
Google scholar
|
[121] |
Mohamed E A, Moustafa M G, Kashif I . Microstructure, thermal, optical and dielectric properties of new glass nanocomposites of SrTiO3 nanoparticles/clusters in tellurite glass matrix.Journal of Non-Crystalline Solids, 2018, 482: 223–229
CrossRef
Google scholar
|
[122] |
Menazea A A, Abdelghany A M, Hakeem N A, ,
CrossRef
Google scholar
|
[123] |
Menazea A A, Abdelghany A M, Hakeem N A, ,
CrossRef
Google scholar
|
[124] |
Abdel-Khalek E K, Elsharkawy M A, Motawea M A, ,
CrossRef
Google scholar
|
[125] |
Rejikumar P R, Jyothy P V, Mathew S, ,
|
[126] |
Abdelghany A M, Zeyada H M, ElBatal H A, ,
CrossRef
Google scholar
|
[127] |
Yang K, Liu J, Shen B, ,
CrossRef
Google scholar
|
[128] |
Fonseca J, Choi S . Electro-and photoelectro-catalysts derived from bimetallic amorphous metal-organic frameworks.Catalysis Science & Technology, 2020, 10(24): 8265–8282
CrossRef
Google scholar
|
[129] |
Ellis L D, Rorrer N A, Sullivan K P, ,
CrossRef
Google scholar
|
[130] |
Schlögl R . Heterogeneous catalysis.Angewandte Chemie International Edition, 2015, 54(11): 3465–3520
CrossRef
Pubmed
Google scholar
|
[131] |
Gärtner D, Sandl S, Jacobi von Wangelin A . Homogeneous vs.heterogeneous: mechanistic insights into iron group metal-catalyzed reductions from poisoning experiments. Catalysis Science & Technology, 2020, 10(11): 3502–3514
CrossRef
Google scholar
|
[132] |
Lee A F, Bennett J A, Manayil J C, ,
CrossRef
Pubmed
Google scholar
|
[133] |
Khan S A, Khan N, Irum U, ,
CrossRef
Pubmed
Google scholar
|
[134] |
Gao C, Lyu F, Yin Y . Encapsulated metal nanoparticles for catalysis.Chemical Reviews, 2021, 121(2): 834–881
CrossRef
Pubmed
Google scholar
|
[135] |
Jin R, Li G, Sharma S, ,
CrossRef
Pubmed
Google scholar
|
[136] |
Majhi S, Sharma K, Singh R, ,
CrossRef
Google scholar
|
[137] |
Mennecke K, Cecilia R, Glasnov T N, ,
CrossRef
Google scholar
|
[138] |
Elhage A, Wang B, Marina N, ,
CrossRef
Pubmed
Google scholar
|
[139] |
Lenz G F, Schneider R, Rossi de Aguiar K M F, ,
CrossRef
Pubmed
Google scholar
|
[140] |
Luo X, Meng M, Li R, ,
CrossRef
Google scholar
|
[141] |
Zheng K, Boccaccini A R . Sol-gel processing of bioactive glass nanoparticles: a review.Advances in Colloid and Interface Science, 2017, 249: 363–373
CrossRef
Pubmed
Google scholar
|
[142] |
Brauer D S . Bioactive glasses — structure and properties.Angewandte Chemie International Edition, 2015, 54(14): 4160–4181
CrossRef
Pubmed
Google scholar
|
[143] |
Jones J R . Review of bioactive glass: from Hench to hybrids.Acta Biomaterialia, 2013, 9(1): 4457–4486
CrossRef
Pubmed
Google scholar
|
[144] |
Miguez-Pacheco V, Hench L L, Boccaccini A R . Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues.Acta Biomaterialia, 2015, 13: 1–15
CrossRef
Pubmed
Google scholar
|
[145] |
Baino F, Novajra G, Miguez-Pacheco V, ,
CrossRef
Google scholar
|
[146] |
Hench L L, Splinter R J, Allen W C, ,
CrossRef
Google scholar
|
[147] |
Erol-Taygun M, Zheng K, Boccaccini A R . Nanoscale bioactive glasses in medical applications.International Journal of Applied Glass Science, 2013, 4(2): 136–148
CrossRef
Google scholar
|
[148] |
Vichery C, Nedelec J M . Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications.Materials, 2016, 9(4): 288–295
CrossRef
Pubmed
Google scholar
|
[149] |
Hum J, Boccaccini A R . Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review.Journal of Materials Science: Materials in Medicine, 2012, 23(10): 2317–2333
CrossRef
Pubmed
Google scholar
|
[150] |
Wu C, Fan W, Chang J . Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells.Journal of Materials Chemistry B, 2013, 1(21): 2710–2718
CrossRef
Pubmed
Google scholar
|
[151] |
Blackburn G, Scott T G, Bayer I S, ,
CrossRef
Pubmed
Google scholar
|
[152] |
Jayalekshmi A C, Victor S P, Sharma C P . Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications.Colloids and Surfaces B: Biointerfaces, 2013, 101: 196–204
CrossRef
Pubmed
Google scholar
|
[153] |
Wu C, Fan W, Zhu Y, ,
CrossRef
Pubmed
Google scholar
|
[154] |
Shih S J, Tzeng W L, Jatnika R, ,
CrossRef
Pubmed
Google scholar
|
[155] |
Li J, Zhai D, Lv F, ,
CrossRef
Pubmed
Google scholar
|
[156] |
Ventura M G, Parola A J, Pires de Matos A . Influence of heat treatment on the colour of Au and Ag glasses produced by the sol-gel pathway.Journal of Non-Crystalline Solids, 2011, 357(4): 1342–1349
CrossRef
Google scholar
|
[157] |
Mazzold P, Carturan S, Quaranta A, ,
CrossRef
Google scholar
|
[158] |
Molina G, Murcia S, Molera J, ,
CrossRef
Google scholar
|
[159] |
Pradell T, Molera J, Roque J, ,
CrossRef
Google scholar
|
[160] |
Palomar T, Redol P, Cruz Almeida I, ,
CrossRef
Google scholar
|
[161] |
Palomar T, Grazia C, Pombo Cardoso I, ,
CrossRef
Pubmed
Google scholar
|
[162] |
Machado C, Machado A, Palomar T, ,
CrossRef
Google scholar
|
[163] |
Gonella F, Mazzoldi P . Chapter 2: Metal nanocluster composite glasses.Handbook of Nanostructured Materials and Nanotechnology, 2000, 4: 81–158
|
[164] |
Liu L C, Risbud S H . Quantum-dot size-distribution analysis and precipitation stages in semiconductor doped glasses.Journal of Applied Physics, 1990, 68(1): 28–32
CrossRef
Google scholar
|
[165] |
Machado T M, Falci R F, Silva I L, ,
CrossRef
Google scholar
|
[166] |
Machado T M, Falci R F, Andrade G F S, ,
CrossRef
Pubmed
Google scholar
|
[167] |
Rajaramakrishna R, Saiyasombat C, Anavekar R V, ,
CrossRef
Google scholar
|
[168] |
Rajaramakrishna R, Karuthedath S, Anavekar R V, ,
CrossRef
Google scholar
|
[169] |
Chen F, Dai S, Xu T, ,
CrossRef
Google scholar
|
[170] |
Ma R, Qian J, Cui S, ,
CrossRef
Google scholar
|
[171] |
Guo Z, Ye S, Liu T, ,
CrossRef
Google scholar
|
[172] |
Singh S P, Karmakar B . Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag:bismuth glass nanocomposites.Plasmonics, 2011, 6(3): 457–467
CrossRef
Google scholar
|
[173] |
Venkateswara Rao G, Shashikala H D . Effect of heat treatment on optical, dielectric and mechanical properties of silver nanoparticle embedded CaO‒CaF2‒P2O5 glass.Journal of Alloys and Compounds, 2015, 622: 108–114
CrossRef
Google scholar
|
[174] |
Swetha B N, Keshavamurthy K . Impact of thermal annealing time on luminescence properties of Eu3+ ions in silver nanoparticles embedded lanthanum sodium borate glasses.Applied Surface Science, 2020, 525: 146505
CrossRef
Google scholar
|
[175] |
Mohammed Danmallam I, Ghoshal S K, Ariffin R, ,
CrossRef
Google scholar
|
[176] |
Qiu J, Shirai M, Nakaya T, ,
CrossRef
Google scholar
|
[177] |
Qiu J, Jiang X, Zhu C, ,
CrossRef
Pubmed
Google scholar
|
[178] |
Hu X, Zhao Q, Jiang X, ,
CrossRef
Google scholar
|
[179] |
Teng Y, Qian B, Jiang N, ,
CrossRef
Google scholar
|
[180] |
Almeida J M P, De Boni L, Avansi W, ,
CrossRef
Pubmed
Google scholar
|
[181] |
Chen S, Akai T, Kadono K, ,
CrossRef
Google scholar
|
[182] |
Sheng J, Kadono K, Yazawa T . Nanosized gold clusters formation in selected areas of soda-lime silicate glass.Journal of Non-Crystalline Solids, 2003, 324(3): 295–299
CrossRef
Google scholar
|
[183] |
Valentin E, Bernas H, Ricolleau C, ,
CrossRef
Pubmed
Google scholar
|
[184] |
Farag H K, Marzouk M A . Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses.Journal of Materials Science: Materials in Electronics, 2017, 28(20): 15480–15487
CrossRef
Google scholar
|
[185] |
Asyikin A S, Halimah M K, Latif A A, ,
CrossRef
Google scholar
|
[186] |
Orives J R, Viali W R, Magnani M, ,
CrossRef
Google scholar
|
[187] |
Widanarto W, Sahar M R, Ghoshal S K, ,
CrossRef
Google scholar
|
[188] |
Widanarto W, Sahar M R, Ghoshal S K, ,
CrossRef
Google scholar
|
[189] |
Anigrahawati P, Sahar M R, Ghoshal S K . Influence of Fe3O4 nanoparticles on structural, optical and magnetic properties of erbium doped zinc phosphate glass.Materials Chemistry and Physics, 2015, 155: 155–161
CrossRef
Google scholar
|
[190] |
Franco D F, Sant’Ana A C, De Oliveira L F C, ,
CrossRef
Google scholar
|
[191] |
Egorova O N, Semjonov S L, Velmiskin V V, ,
CrossRef
Pubmed
Google scholar
|
[192] |
Sathi Z M, Zhang J, Luo Y, ,
CrossRef
Google scholar
|
[193] |
Wei T, Chen F, Tian Y, ,
CrossRef
Pubmed
Google scholar
|
[194] |
Chen D D, Qian Q, Peng M Y, ,
CrossRef
Google scholar
|
[195] |
Li L, Yang Y, Zhou D, ,
CrossRef
Google scholar
|
[196] |
Worsch C, Büttner M, Schaaf P, ,
CrossRef
Google scholar
|
[197] |
Harizanova R, Völksch G, Rüssel C . Microstructures formed during devitrification of Na2O·Al2O3·B2O3·SiO2·Fe2O3 glasses.Journal of Materials Science, 2010, 45(5): 1350–1353
CrossRef
Google scholar
|
[198] |
Worsch C, Schaaf P, Harizanova R, ,
CrossRef
Google scholar
|
[199] |
Woltz S, Hiergeist R, Görnert P, ,
CrossRef
Google scholar
|
[200] |
Burda C, Chen X, Narayanan R, ,
CrossRef
Pubmed
Google scholar
|
[201] |
Maurer R D . Nucleation and growth in a photosensitive glass.Journal of Applied Physics, 1958, 29(1): 1–8
CrossRef
Google scholar
|
[202] |
Zhang K, Zhou D, Qiu J, ,
CrossRef
Google scholar
|
[203] |
Manzani D, Almeida J M P, Napoli M, ,
CrossRef
Google scholar
|
[204] |
Qiu J, Zhu C, Nakaya T, ,
CrossRef
Google scholar
|
[205] |
Zeng H, Qiu J, Ye Z, ,
CrossRef
Google scholar
|
[206] |
Hosono H, Matsunami N, Kudo A, ,
CrossRef
Google scholar
|
[207] |
Hosono H, Kawamura K, Kameshima Y, ,
CrossRef
Google scholar
|
[208] |
Lifshitz I M, Slyozov V V . The kinetics of precipitation from supersaturated solid solutions.Journal of Physics and Chemistry of Solids, 1961, 19(1‒2): 35–50
CrossRef
Google scholar
|
[209] |
Houk L R, Challa S R, Grayson B, ,
CrossRef
Pubmed
Google scholar
|
[210] |
Azlina Y, Azlan M N, Halimah M K, ,
CrossRef
Google scholar
|
[211] |
Muhammad Noorazlan A, Mohamed Kamari H, Zulkefly S S, ,
CrossRef
Google scholar
|
[212] |
Halimah M K, Awshah A A, Hamza A M, ,
CrossRef
Google scholar
|
[213] |
Orives J R, Viali W R, Santagneli S H, ,
CrossRef
Pubmed
Google scholar
|
[214] |
Orives J R, Pichon B P, Mertz D, ,
CrossRef
Google scholar
|
[215] |
Hench L L, West J K . The sol-gel process.Chemical Reviews, 1990, 90(1): 33–72
CrossRef
Google scholar
|
[216] |
Graham T . On the properties of silicic acid and other analogous colloidal substances.Journal of the Chemical Society, 1864, 17: 318–327
CrossRef
Google scholar
|
[217] |
Dislich H . New routes to multicomponent oxide glasses.Angewandte Chemie International Edition, 1971, 10(6): 363–370
CrossRef
Google scholar
|
[218] |
Yoldas B E . Monolithic glass formation by chemical polymerization.Journal of Materials Science, 1979, 14(8): 1843–1849
CrossRef
Google scholar
|
[219] |
Razdobreev I, El Hamzaoui H, Ivanov V Y, ,
CrossRef
Pubmed
Google scholar
|
[220] |
Vallet-Regí M . Ceramics for medical applications.Journal of the Chemical Society — Dalton Transactions: Inorganic Chemistry, 2001, 2(2): 97–108
CrossRef
Google scholar
|
[221] |
Kaur G, Pickrell G, Sriranganathan N, ,
CrossRef
Pubmed
Google scholar
|
[222] |
El Hamzaoui H, Bigot L, Bouwmans G, ,
CrossRef
Google scholar
|
[223] |
Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. New York, USA: Academic Press, 1990
|
[224] |
Zarzycki J, Prassas M, Phalippou J . Synthesis of glasses from gels: the problem of monolithic gels.Journal of Materials Science, 1982, 17(11): 3371–3379
CrossRef
Google scholar
|
[225] |
Ulrich D R . Prospects of sol-gel processes.Journal of Non-Crystalline Solids, 1988, 100(1‒3): 174–193
CrossRef
Google scholar
|
[226] |
Kirkbir F, Murata H, Meyers D, ,
CrossRef
Google scholar
|
[227] |
Kajihara K . Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses.Journal of Asian Ceramic Societies, 2013, 1(2): 121–133
CrossRef
Google scholar
|
[228] |
Adachi T, Sakka S . Preparation of monolithic silica gel and glass by the sol-gel method using N, N-dimethylformamide.Journal of Materials Science, 1987, 22(12): 4407–4410
CrossRef
Google scholar
|
[229] |
Chan J B, Jonas J . Effect of various amide additives on the tetramethoxysilane sol-gel process.Journal of Non-Crystalline Solids, 1990, 126(1‒2): 79–86
CrossRef
Google scholar
|
[230] |
Kirkbir F, Murata H, Meyers D, ,
CrossRef
Google scholar
|
[231] |
Iler R K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. New York, USA: John Wiley and Sons Ltd., 1979
|
[232] |
Yamane M, Aso S, Okano S, ,
CrossRef
Google scholar
|
[233] |
Hæreid S, Einarsrud M A, Scherer G W . Mechanical strengthening of TMOS-based alcogels by aging in silane solutions.Journal of Sol-Gel Science and Technology, 1994, 3: 199–204
CrossRef
Google scholar
|
[234] |
Kawaguchi T, Hishikura H, Iura J, ,
CrossRef
Google scholar
|
[235] |
Sarkar A, Chaudhuri S R, Wang S, ,
CrossRef
Google scholar
|
[236] |
Murata H, Meyers D E, Kirkbir F, ,
CrossRef
Google scholar
|
[237] |
Scherer G W, Smith D M . Cavitation during drying of a gel.Journal of Non-Crystalline Solids, 1995, 189(3): 197–211
CrossRef
Google scholar
|
[238] |
Smith D M, Stein D, Anderson J M, ,
CrossRef
Google scholar
|
[239] |
Susa K, Matsuyama I, Satoh S, ,
CrossRef
Google scholar
|
[240] |
Susa K, Matsuyama I, Satoh S . Sol-gel derived Ge-doped silica glass for optical fiber application.II. Excess optical loss. Journal of Non-Crystalline Solids, 1991, 128(2): 118–125
CrossRef
Google scholar
|
[241] |
Breitscheidel B, Zieder J, Schubert U . Metal complexes in inorganic matrices.7. Nanometer-sized, uniform metal particles in a silica matrix by sol-gel processing of metal complexes. Chemistry of Materials, 1991, 3(3): 559–566
CrossRef
Google scholar
|
[242] |
Lembacher C, Schubert U . Nanosized platinum particles by sol-gel processing of tethered metal complexes: influence of the precursors and the organic group removal method on the particle size.New Journal of Chemistry, 1998, 22(7): 721–724
CrossRef
Google scholar
|
[243] |
Trimmel G, Lembacher C, Kickelbick G, ,
CrossRef
Google scholar
|
[244] |
Lukehart C M, Milne S B, Stock S R . Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors.Chemistry of Materials, 1998, 10(3): 903–908
CrossRef
Google scholar
|
[245] |
Carpenter J P, Lukehart C M, Stock S R, ,
CrossRef
Google scholar
|
[246] |
Carpenter J P, Lukehart C M, Henderson D O, ,
CrossRef
Google scholar
|
[247] |
Carpenter J P, Lukehart C M, Milne S B, ,
CrossRef
Google scholar
|
[248] |
Mathieu H, Richard T, Allègre J, ,
CrossRef
Google scholar
|
[249] |
Zhong J, Ma X, Lu H, ,
CrossRef
Google scholar
|
[250] |
Zhong J, Xiang W, Zhao H, ,
CrossRef
Google scholar
|
[251] |
Pei L, Liang X, Cai W, ,
CrossRef
Google scholar
|
[252] |
Gao H, Xiang W, Ma X, ,
CrossRef
Google scholar
|
[253] |
Zhong J, Xiang W . Sol-gel synthesis and third-order nonlinear optical properties of Cu3.8Ni nanoparticles doped glass.Journal of Non-Crystalline Solids, 2017, 462: 17–22
CrossRef
Google scholar
|
[254] |
Huang Y, Xiang W, Lin S, ,
CrossRef
Google scholar
|
[255] |
Zhang Y, Jin Y, He M, ,
CrossRef
Google scholar
|
[256] |
Le Rouge A, El Hamzaoui H, Capoen B, ,
CrossRef
Google scholar
|
[257] |
Campos-Zuñiga E E, Alonso-Lemus I L, Agarwal V, ,
CrossRef
Google scholar
|
[258] |
Schubert U, Amberg-Schwab S, Breitscheidel B . Metal complexes in inorganic matrices.4. Small metal particles in palladium‒silica composites by sol-gel processing of metal complexes. Chemistry of Materials, 1989, 1(6): 576–578
CrossRef
Google scholar
|
[259] |
Schubert U . Metal oxide/silica and metal/silica nanocomposites from organofunctional single-source sol-gel precursors.Advanced Engineering Materials, 2004, 6(3): 173–176
CrossRef
Google scholar
|
[260] |
Schubert U . Preparation of metal oxide or metal nanoparticles in silica via metal coordination to organofunctional trialkoxysilanes.Polymer International, 2009, 58(3): 317–322
CrossRef
Google scholar
|
[261] |
Trimmel G, Schubert U . Sol-gel processing of tethered metal complexes: influence of the metal and the complexing alkoxysilane on the texture of the obtained silica gels.Journal of Non-Crystalline Solids, 2001, 296(3): 188–200
CrossRef
Google scholar
|
[262] |
Moerke W, Lamber R, Schubert U, ,
CrossRef
Google scholar
|
[263] |
Kaiser A, Görsmann C, Schubert U . Influence of the metal complexation on size and composition of Cu/Ni nano-particles prepared by sol-gel processing.Journal of Sol-Gel Science and Technology, 1997, 8(1‒3): 795–799
CrossRef
Google scholar
|
[264] |
Malenovska M, Neouze M A, Schubert U, ,
CrossRef
Pubmed
Google scholar
|
[265] |
Reisfeld R . Prospects of sol-gel technology towards luminescent materials.Optical Materials, 2001, 16(1‒2): 223707
CrossRef
Google scholar
|
[266] |
Yang G, Cheng S, Li C, ,
CrossRef
Google scholar
|
[267] |
Yanes A C, Santana-Alonso A, Méndez-Ramos J, ,
CrossRef
Google scholar
|
[268] |
Zhang M, Fan H, Xi B, ,
CrossRef
Google scholar
|
[269] |
Wang G, Qin W, Zhang J, ,
CrossRef
Google scholar
|
[270] |
Kalwarczyk E, Kabaciński P, Kardaś T M, ,
CrossRef
Pubmed
Google scholar
|
[271] |
Melnikov P, Arkhangelsky I V, Nascimento V A, ,
CrossRef
Google scholar
|
[272] |
Gaddam A, Fernandes H R, Tulyaganov D U, ,
CrossRef
Google scholar
|
[273] |
Harper C A. Handbook of Ceramics, Glasses, and Diamonds.New York, USA: McGraw-Hill, 2001
|
[274] |
Pope E J A, Mackenzie J D . Nd-doped silica glass I: structural evolution in the sol-gel state.Journal of Non-Crystalline Solids, 1988, 106(1‒3): 236–241
CrossRef
Google scholar
|
[275] |
Campostrini R, Carturan G, Ferrari M, ,
CrossRef
Google scholar
|
[276] |
Pope E J A, Mackenzie J D . Sol-gel processing of neodymian-silica glass.Journal of the American Ceramic Society, 1993, 76(5): 1325–1328
CrossRef
Google scholar
|
[277] |
Chakrabarti S, Sahu J, Chakraborty M, ,
CrossRef
Google scholar
|
[278] |
Monteil A, Chaussedent S, Alombert-Goget G, ,
CrossRef
Google scholar
|
[279] |
Langlet M, Coutier C, Meffre W, ,
CrossRef
Google scholar
|
[280] |
Sckerl M W, Guldberg-Kjaer S, Rysholt Poulsen M, ,
CrossRef
Google scholar
|
[281] |
Stepanov A L . Chapter 4: Laser annealing of metal nanoparticles synthesized in glasses by ion implantation.Glass Nanocomposites Synthesis, Properties and Applications, 2016, 115–130
|
[282] |
De Marchi G, Mattei G, Mazzoldi P, ,
CrossRef
Google scholar
|
[283] |
Srivastava S K, Gangopadhyay P, Amirthapandian S, ,
CrossRef
Google scholar
|
[284] |
Liu Q, He X, Zhou X, ,
CrossRef
Google scholar
|
[285] |
Vytykacova S, Svecova B, Nekvindova P, ,
CrossRef
Google scholar
|
[286] |
Zhang B, Sato R, Oyoshi K, ,
CrossRef
Google scholar
|
[287] |
Herrera A, Balzaretti N M . Effect of gold nanoparticles in broadband near-infrared emission of Pr3+ doped B2O3‒PbO‒Bi2O3‒GeO2 glass.Journal of Luminescence, 2017, 181: 147–152
CrossRef
Google scholar
|
[288] |
Stepanov A L, Galyautdinov M F, Evlyukhin A B, ,
CrossRef
Google scholar
|
[289] |
Ghosh B, Chakraborty P, Singh B P, ,
CrossRef
Google scholar
|
[290] |
Wang Y H, Wang Y M, Lu J D, ,
CrossRef
Google scholar
|
[291] |
Xiao X H, Ren F, Wang J B, ,
CrossRef
Google scholar
|
[292] |
Shen Y, Qi T, Qiao Y, ,
CrossRef
Google scholar
|
[293] |
Wang J, Jia G, Zhang B, ,
CrossRef
Google scholar
|
[294] |
Nistor L C, van Landuyt J, Barton J B, ,
CrossRef
Google scholar
|
[295] |
Stepanov A L, Popok V N . Nanostructuring of silicate glass under low-energy Ag-ion implantation.Surface Science, 2004, 566‒568: 1250–1254
CrossRef
Google scholar
|
[296] |
Gnaser H, Brodyanski A, Reuscher B . Focused ion beam implantation of Ga in Si and Ge: fluence-dependent retention and surface morphology.Surface and Interface Analysis, 2008, 40(11): 1415–1422
CrossRef
Google scholar
|
[297] |
Stanek S, Nekvindova P, Svecova B, ,
CrossRef
Google scholar
|
[298] |
Fukumi K, Chayahara A, Kadono K, ,
CrossRef
Google scholar
|
[299] |
Yanes A C, del-Castillo J . Enhanced emission via energy transfer in RE co-doped SiO2–KYF4 nano-glass-ceramics for white LEDs.Journal of Alloys and Compounds, 2016, 658: 170–176
CrossRef
Google scholar
|
[300] |
Wang Y H, Liu F, Cheng H, ,
CrossRef
Google scholar
|
[301] |
Gonella F, Mattei G, Mazzoldi P, ,
CrossRef
Google scholar
|
[302] |
Cesca T, Calvelli P, Battaglin G, ,
CrossRef
Pubmed
Google scholar
|
[303] |
Mattei G, Marchi G D, Maurizio C, ,
CrossRef
Pubmed
Google scholar
|
[304] |
Liau Z L, Tsaur B Y, Mauer J W . Influence of atomic mixing and preferential sputtering on depth profiles and interfaces.Journal of Vacuum Science and Technology, 1979, 16(2): 121–127
CrossRef
Google scholar
|
[305] |
Yamada T, Takano A, Sugita K, ,
CrossRef
Google scholar
|
[306] |
Cai G X, Ren F, Xiao X H, ,
|
[307] |
Bourgoin J C, Corbett J W . Enhanced diffusion mechanisms.Radiation Effects, 1978, 36(3‒4): 157–188
CrossRef
Google scholar
|
[308] |
Jia G, Xu R, Mu X, ,
CrossRef
Pubmed
Google scholar
|
[309] |
Wang J, Zhang L, Zhang X, ,
CrossRef
Google scholar
|
[310] |
Voorhees P W . The theory of Ostwald ripening.Journal of Statistical Physics, 1985, 38(1‒2): 231–252
CrossRef
Google scholar
|
[311] |
Fan H J, Gösele U, Zacharias M . Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review.Small, 2007, 3(10): 1660–1671
CrossRef
Pubmed
Google scholar
|
[312] |
Xu Y H, Wang J P . Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation.Advanced Materials, 2008, 20(5): 994–999
CrossRef
Google scholar
|
[313] |
Heggen M, Oezaslan M, Houben L, ,
CrossRef
Google scholar
|
[314] |
Amekura H, Yoshitake M, Plaksin O A, ,
CrossRef
Google scholar
|
[315] |
Wang J, Jia G Y, Zhang B, ,
|
[316] |
Peña O, Pal U, Rodríguez-Fernández L, ,
CrossRef
Google scholar
|
[317] |
Torres-Torres C, López-Suárez A, Can-Uc B, ,
CrossRef
Pubmed
Google scholar
|
[318] |
Yang X C, Li L L, Huang M, ,
CrossRef
Google scholar
|
[319] |
Obraztsov P A, Nashchekin A V, Nikonorov N V, ,
CrossRef
Google scholar
|
[320] |
Garfinkel H M . Ion-exchange equilibria between glass and molten salts.The Journal of Physical Chemistry, 1968, 72(12): 4175–4181
CrossRef
Google scholar
|
[321] |
Ramaswamy R V, Srivastava R . Ion-exchanged glass waveguides: a review.Journal of Lightwave Technology, 1988, 6(6): 984–1000
CrossRef
Google scholar
|
[322] |
Crank J. The Mathematics of Diffusion. Oxford, UK: Clarendon, 1956
|
[323] |
Kirkwood J G, Oppenheim J. Chemical Thermodynamics. New York, USA: McGraw Hill, 1961
|
[324] |
Zhao J, Zhu J, Yang Z, ,
CrossRef
Google scholar
|
[325] |
Zhao J, Yang Z, Yu C, ,
CrossRef
Google scholar
|
[326] |
Karvonen L, Rönn J, Kujala S, ,
CrossRef
Google scholar
|
[327] |
Mathpal M C, Kumar P, Kumar S, ,
CrossRef
Google scholar
|
[328] |
Kumar P, Mathpal M C, Tripathi A K, ,
CrossRef
Pubmed
Google scholar
|
[329] |
Simo A, Polte J, Pfänder N, ,
CrossRef
Pubmed
Google scholar
|
[330] |
Sheng J . Growth of silver nanoclusters embedded in soda-lime silicate glasses.International Journal of Hydrogen Energy, 2009, 34(5): 2471–2474
CrossRef
Google scholar
|
[331] |
Kumar P, Mathpal M C, Hamad S, ,
CrossRef
Google scholar
|
[332] |
Marchi G, Caccavale F, Gonella F, ,
CrossRef
Google scholar
|
[333] |
Rahman A, Mariotto G, Cattaruzza E, ,
CrossRef
Google scholar
|
[334] |
Zhang J, Dong W, Sheng J, ,
CrossRef
Google scholar
|
[335] |
Sharma A . Energetic argon beam stimulated growth of plasmonic silver nanoparticles in Ag+-exchanged soda glass: a study on the structural, optical, photoluminescence and electrical behavior.Materials Science and Engineering B, 2021, 263: 1–10
|
[336] |
Hofmeister H, Thiel S, Dubiel M, ,
CrossRef
Google scholar
|
[337] |
Rahman A, Giarola M, Cattaruzza E, ,
CrossRef
Pubmed
Google scholar
|
[338] |
Quaranta A, Rahman A, Mariotto G, ,
CrossRef
Google scholar
|
[339] |
Lenoir M, Grandjean A, Poissonnet S, ,
CrossRef
Google scholar
|
[340] |
Mysen B O, Frantz J D . Silicate melts at magmatic temperatures: in-situ structure determination to 1651 °C and effect of temperature and bulk composition on the mixing behavior of structural units.Contributions to Mineralogy and Petrology, 1994, 117(1): 1–14
CrossRef
Google scholar
|
[341] |
Jansen M . Homoatomic d10–d10 interactions: their effects on structure and chemical and physical properties.Angewandte Chemie International Edition, 1987, 26(11): 1098–1110
CrossRef
Google scholar
|
[342] |
Gonella F, Quaranta A . Stress-induced birefringence in silver-diffused glass waveguides.Journal of Modern Optics, 1992, 39(7): 1401–1405
CrossRef
Google scholar
|
[343] |
Araujo R . Colorless glasses containing ion-exchanged silver.Applied Optics, 1992, 31(25): 5221–5224
CrossRef
Pubmed
Google scholar
|
[344] |
Belharouak I, Weill F, Parent C, ,
CrossRef
Google scholar
|
[345] |
Bromann K, Félix C, Brune H, ,
CrossRef
Pubmed
Google scholar
|
[346] |
Bastús N G, Comenge J, Puntes V . Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.Langmuir, 2011, 27(17): 11098–11105
CrossRef
Pubmed
Google scholar
|
[347] |
Takesue M, Tomura T, Yamada M, ,
CrossRef
Pubmed
Google scholar
|
[348] |
Ye S, Guo Z, Wang H, ,
CrossRef
Google scholar
|
[349] |
Chen Y, Karvonen L, Säynätjoki A, ,
CrossRef
Google scholar
|
[350] |
Berneschi S, Righini G C, Pelli S . Towards a glass new world: the role of ion-exchange in modern technology.Applied Sciences, 2021, 11(10): 4610
CrossRef
Google scholar
|
[351] |
Debenedetti P G, Stillinger F H . Supercooled liquids and the glass transition.Nature, 2001, 410(6825): 259–267
CrossRef
Pubmed
Google scholar
|
[352] |
Wackerow S, Seifert G, Abdolvand A . Homogenous silver-doped nanocomposite glass.Optical Materials Express, 2011, 1(7): 1224–1231
CrossRef
Google scholar
|
[353] |
Sgibnev Y, Asamoah B, Nikonorov N, ,
CrossRef
Google scholar
|
[354] |
Lumeau J, Zanotto E D . A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass.International Materials Reviews, 2017, 62(6): 348–366
CrossRef
Google scholar
|
[355] |
Nikonorov N V, Panysheva E I, Tunimanova I V, ,
CrossRef
Google scholar
|
[356] |
Jiao Q, Yu X, Xu X, ,
CrossRef
Google scholar
|
[357] |
Zhang Q, Liu X, Qiao Y, ,
CrossRef
Google scholar
|
[358] |
Manikandan D, Mohan S, Magudapathy P, ,
CrossRef
Google scholar
|
[359] |
Chervinskii S, Sevriuk V, Reduto I, ,
CrossRef
Google scholar
|
[360] |
Tite T, Ollier N, Sow M C, ,
CrossRef
Google scholar
|
[361] |
Goutaland F, Sow M, Ollier N, ,
CrossRef
Google scholar
|
[362] |
Goutaland F, Colombier J P, Sow M C, ,
CrossRef
Pubmed
Google scholar
|
[363] |
Niry M D, Mostafavi-Amjad J, Khalesifard H R, ,
CrossRef
Google scholar
|
[364] |
Babich E, Kaasik V, Redkov A, ,
CrossRef
Pubmed
Google scholar
|
[365] |
Wackerow S, Abdolvand A . Laser-assisted one-step fabrication of homogeneous glass–silver composite.Applied Physics A: Materials Science & Processing, 2012, 109(1): 45–49
CrossRef
Google scholar
|
[366] |
Wackerow S, Abdolvand A . Generation of silver nanoparticles with controlled size and spatial distribution by pulsed laser irradiation of silver ion-doped glass.Optics Express, 2014, 22(5): 5076–5085
CrossRef
Pubmed
Google scholar
|
[367] |
Zhang J, Dong W, Qiao L, ,
CrossRef
Google scholar
|
[368] |
Sonal , Sharma A, Aggarwal S . Optical investigation of soda lime glass with buried silver nanoparticles synthesised by ion implantation.Journal of Non-Crystalline Solids, 2018, 485: 57–65
CrossRef
Google scholar
|
[369] |
Gangopadhyay P, Magudapathy P, Kesavamoorthy R, ,
CrossRef
Google scholar
|
[370] |
Gangopadhyay P, Magudapathy P, Srivastava S K, ,
CrossRef
Google scholar
|
[371] |
Véron O, Blondeau J P, Meneses D D S, ,
CrossRef
Google scholar
|
[372] |
Zhang X, Luo W, Wang L J, ,
CrossRef
Google scholar
|
[373] |
Hirasawa M, Shirakawa H, Hamamura H, ,
CrossRef
Google scholar
|
[374] |
Cattaruzza E, Battaglin G, Canton P, ,
CrossRef
Google scholar
|
[375] |
Chou Y J, Lin S H, Shih C J, ,
CrossRef
Google scholar
|
[376] |
Palgrave R G, Parkin I P . Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.Journal of the American Chemical Society, 2006, 128(5): 1587–1597
CrossRef
Pubmed
Google scholar
|
[377] |
Delgado J, Vilarigues M, Ruivo A, ,
CrossRef
Google scholar
|
[378] |
Jiménez J A, Lysenko S, Zhang G, ,
CrossRef
Google scholar
|
[379] |
Liu Y F, Liebenberg D H . Electromagnetic radio frequency heating in the pulsed electric current sintering (PECS) process.MRS Communications, 2017, 7(2): 266–271
CrossRef
Google scholar
|
[380] |
Cramer C L, McMurray J W, Lance M J, ,
CrossRef
Google scholar
|
[381] |
Weston N S, Thomas B, Jackson M . Processing metal powders via field assisted sintering technology (FAST): a critical review.Materials Science and Technology, 2019, 35(11): 1306–1328
CrossRef
Google scholar
|
[382] |
Gan H, Wang C B, Shen Q, ,
CrossRef
Google scholar
|
[383] |
Alaniz J E, Dupuy A D, Kodera Y, ,
CrossRef
Google scholar
|
[384] |
Kodera Y, Hardin C L, Garay J E . Transmitting, emitting and controlling light: processing of transparent ceramics using current-activated pressure-assisted densification.Scripta Materialia, 2013, 69(2): 149–154
CrossRef
Google scholar
|
[385] |
Shen Z, Johnsson M, Zhao Z, ,
CrossRef
Google scholar
|
[386] |
Deng S, Li R, Yuan T, ,
CrossRef
Google scholar
|
[387] |
Mamedov V . Spark plasma sintering as advanced PM sintering method.Powder Metallurgy, 2002, 45(4): 322–328
CrossRef
Google scholar
|
[388] |
Marder R, Estournès C, Chevallier G, ,
CrossRef
Google scholar
|
[389] |
Hulbert D M, Anders A, Andersson J, ,
CrossRef
Google scholar
|
[390] |
Tokita M . Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering.Materials Science Forum, 1999, 308‒311: 83–88
CrossRef
Google scholar
|
[391] |
Hu Z Y, Zhang Z H, Cheng X W, ,
CrossRef
Google scholar
|
[392] |
Zhao D, Feng J, Huo Q, ,
CrossRef
Pubmed
Google scholar
|
[393] |
Zhang X, Gu S, Zhou B, ,
CrossRef
Google scholar
|
[394] |
Raven M S . Radio frequency sputtering and the deposition of high-temperature superconductors.Journal of Materials Science Materials in Electronics, 1994, 5(3): 129–146
CrossRef
Google scholar
|
[395] |
Horwitz C M . Radio frequency sputtering — the significance of power input.Journal of Vacuum Science & Technology A, 1983, 1(4): 1795–1800
CrossRef
Google scholar
|
[396] |
Mattei G, Battaglin G, Cattaruzza E, ,
CrossRef
Google scholar
|
[397] |
Cattaruzza E, Battaglin G, Gonella F, ,
CrossRef
Google scholar
|
[398] |
Okuyama K . Preparation of micro-controlled particles using aerosol process.Journal of Aerosol Science, 1991, 22: S7–S10
CrossRef
Google scholar
|
[399] |
Messing G L, Zhang S C, Jayanthi G V . Ceramic powder synthesis by spray pyrolysis.Journal of the American Ceramic Society, 1993, 76(11): 2707–2726
CrossRef
Google scholar
|
[400] |
El-Kady A M, Ali A F, Rizk R A, ,
CrossRef
Google scholar
|
[401] |
Hong Y L, Liu Z, Wang L, ,
CrossRef
Pubmed
Google scholar
|
[402] |
Cai Z, Liu B, Zou X, ,
CrossRef
Pubmed
Google scholar
|
[403] |
Pu J, Tang L, Li C, ,
CrossRef
Google scholar
|
[404] |
Lozovoy K A, Korotaev A G, Kokhanenko A P, ,
CrossRef
Google scholar
|
[405] |
Zinke-Allmang M . Phase separation on solid surfaces: nucleation, coarsening and coalescence kinetics.Thin Solid Films, 1999, 346(1‒2): 1–68
CrossRef
Google scholar
|
[406] |
Ertorer E, Avery J C, Pavelka L C, ,
CrossRef
Google scholar
|
[407] |
Hamilton J A, Pugh T, Johnson A L, ,
CrossRef
Pubmed
Google scholar
|
[408] |
Palgrave R G, Parkin I P . Aerosol assisted chemical vapor deposition of gold and nanocomposite thin films from hydrogen tetrachloroaurate(III).Chemistry of Materials, 2007, 19(19): 4639–4647
CrossRef
Google scholar
|
[409] |
Ashraf S, Blackman C S, Hyett G, ,
CrossRef
Google scholar
|
[410] |
Talbot L, Cheng R K, Schefer R W, ,
CrossRef
Google scholar
|
[411] |
Ponja S D, Williamson B A D, Sathasivam S, ,
CrossRef
Google scholar
|
[412] |
Gardecka A J, Goh G K L, Sankar G, ,
CrossRef
Google scholar
|
[413] |
Walters G, Parkin I P . Aerosol assisted chemical vapour deposition of ZnO films on glass with noble metal and p-type dopants; use of dopants to influence preferred orientation.Applied Surface Science, 2009, 255(13‒14): 6555–6560
CrossRef
Google scholar
|
[414] |
Ono M, Hata M, Tsunekawa M, ,
CrossRef
Google scholar
|
[415] |
Yang Y, Kelley K, Sachet E, ,
CrossRef
Google scholar
|
[416] |
Ren M, Jia B, Ou J Y, ,
CrossRef
Pubmed
Google scholar
|
[417] |
Pilot R, Signorini R, Durante C, ,
CrossRef
Pubmed
Google scholar
|
[418] |
Kolobkova E, Kuznetsova M S, Nikonorov N . Ag/Na ion exchange in fluorophosphate glasses and formation of Ag nanoparticles in the bulk and on the surface of the glass.ACS Applied Nano Materials, 2019, 2(11): 6928–6938
CrossRef
Google scholar
|
[419] |
Takada K . Progress and prospective of solid-state lithium batteries.Acta Materialia, 2013, 61(3): 759–770
CrossRef
Google scholar
|
[420] |
Thangadurai V, Weppner W . Recent progress in solid oxide and lithium ion conducting electrolytes research.Ionics, 2006, 12(1): 81–92
CrossRef
Google scholar
|
[421] |
Kim J G, Son B, Mukherjee S, ,
CrossRef
Google scholar
|
[422] |
Takada K, Aotani N, Iwamoto K, ,
CrossRef
Google scholar
|
[423] |
Liu L, Zhao F, Chen X, ,
CrossRef
Pubmed
Google scholar
|
[424] |
Shoaib M, Saeed A, Rahman M S U, ,
CrossRef
Pubmed
Google scholar
|
[425] |
Tabia Z, El Mabrouk K, Bricha M, ,
CrossRef
Pubmed
Google scholar
|
[426] |
Shuai C, Xu Y, Feng P, ,
CrossRef
Google scholar
|
[427] |
Fonseca J, Choi S . Rational synthesis of a hierarchical supramolecular porous material created via self-assembly of metal-organic framework nanosheets.Inorganic Chemistry, 2020, 59(6): 3983–3992
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |