Nanoparticles embedded into glass matrices: glass nanocomposites

Javier FONSECA

PDF(10909 KB)
PDF(10909 KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220607. DOI: 10.1007/s11706-022-0607-7
REVIEW ARTICLE
REVIEW ARTICLE

Nanoparticles embedded into glass matrices: glass nanocomposites

Author information +
History +

Abstract

Research on glass nanocomposites (GNCs) has been very active in the past decades. GNCs have attracted — and still do — great interest in the fields of optoelectronics, photonics, sensing, electrochemistry, catalysis, biomedicine, and art. In this review, the potential applications of GNCs in these fields are briefly described to show the reader the possibilities of these materials. The most important synthesis methods of GNCs (melt-quenching, sol-gel, ion implantation, ion-exchange, staining process, spark plasma sintering, radio frequency sputtering, spray pyrolysis, and chemical vapor deposition techniques) are extensively explained. The major aim of this review is to systematize our knowledge about the synthesis of GNCs and to explore the mechanisms of formation and growth of NPs within glass matrices. The size-controlled preparation of NPs within glass matrices, which remains a challenge, is essential for advanced applications. Therefore, a thorough understanding of GNC synthesis techniques is expected to facilitate the preparation of innovative GNCs.

Graphical abstract

Keywords

glass nanocomposites / melt-quenching / sol-gel / ion implantation / ion-exchange

Cite this article

Download citation ▾
Javier FONSECA. Nanoparticles embedded into glass matrices: glass nanocomposites. Front. Mater. Sci., 2022, 16(3): 220607 https://doi.org/10.1007/s11706-022-0607-7

References

[1]
Lee J, Mahendra S, Alvarez P J J . Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations.ACS Nano, 2010, 4(7): 3580–3590
CrossRef Pubmed Google scholar
[2]
Yang Z, Ren J, Zhang Z, , . Recent advancement of nanostructured carbon for energy applications.Chemical Reviews, 2015, 115(11): 5159–5223
CrossRef Pubmed Google scholar
[3]
Aricò A S, Bruce P, Scrosati B, , . Nanostructured materials for advanced energy conversion and storage devices.Nature Materials, 2005, 4(5): 366–377
CrossRef Pubmed Google scholar
[4]
Sanchez F, Sobolev K . Nanotechnology in concrete — a review.Construction and Building Materials, 2010, 24(11): 2060–2071
CrossRef Google scholar
[5]
Shang L, Bian T, Zhang B, , . Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions.Angewandte Chemie International Edition, 2014, 53(1): 250–254
CrossRef Pubmed Google scholar
[6]
Yuan Q, Duan H H, Li L L, , . Homogeneously dispersed ceria nanocatalyst stabilized with ordered mesoporous alumina.Advanced Materials, 2010, 22(13): 1475–1478
CrossRef Pubmed Google scholar
[7]
Ohko Y, Tatsuma T, Fujii T, , . Multicolour photochromism of TiO2 films loaded with silver nanoparticles.Nature Materials, 2003, 2(1): 29–31
CrossRef Pubmed Google scholar
[8]
Lykhach Y, Staudt T, Tsud N, , . Enhanced reactivity of Pt nanoparticles supported on ceria thin films during ethylene dehydrogenation.Physical Chemistry Chemical Physics, 2011, 13(1): 253–261
CrossRef Pubmed Google scholar
[9]
Mitra A, De G . Chapter 6: Sol-gel synthesis of metal nanoparticle incorporated oxide films on glass.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 145–163
[10]
Fonseca J, Lu J . Single-atom catalysts designed and prepared by the atomic layer deposition technique.ACS Catalysis, 2021, 11(12): 7018–7059
CrossRef Google scholar
[11]
Karmakar B . Chapter 1: Fundamentals of glass and glass nanocomposites.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 3–53
[12]
Zanotto E D, Mauro J C . The glassy state of matter: its definition and ultimate fate.Journal of Non-Crystalline Solids, 2017, 471: 490–495
CrossRef Google scholar
[13]
Fonseca J, Gong T, Jiao L, , . Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses.Journal of Materials Chemistry A, 2021, 9(17): 10562–10611
CrossRef Google scholar
[14]
Xiang W, Gao H, Ma L, , . Valence state control and third-order nonlinear optical properties of copper embedded in sodium borosilicate glass.ACS Applied Materials & Interfaces, 2015, 7(19): 10162–10168
CrossRef Pubmed Google scholar
[15]
Zhong J, Xiang W, Chen Z, , . Microstructures and third-order optical nonlinearities of Cu2In nanoparticles in glass matrix.Journal of Alloys and Compounds, 2013, 572: 137–144
CrossRef Google scholar
[16]
Chatterjee S, Saha S K, Chakravorty D . Chapter 2: Glass-based nanocomposites.Glass Nanocomposites: Synthesis, Properties and Applications, 2016, 57–88
[17]
Amendola V, Pilot R, Frasconi M, , . Surface plasmon resonance in gold nanoparticles: a review.Journal of Physics: Condensed Matter, 2017, 29(20): 203002
CrossRef Pubmed Google scholar
[18]
Korgel B A . Materials science: composite for smarter windows.Nature, 2013, 500(7462): 278–279
CrossRef Pubmed Google scholar
[19]
Mangin S, Gottwald M, Lambert C H, , . Engineered materials for all-optical helicity-dependent magnetic switching.Nature Materials, 2014, 13(3): 286–292
CrossRef Pubmed Google scholar
[20]
Llordés A, Garcia G, Gazquez J, , . Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites.Nature, 2013, 500(7462): 323–326
CrossRef Pubmed Google scholar
[21]
Castro J M, Geraghty D F, West B R, , . Fabrication and comprehensive modeling of ion-exchanged Bragg optical add-drop multiplexers.Applied Optics, 2004, 43(33): 6166–6173
CrossRef Pubmed Google scholar
[22]
Veasey D L, Funk D S, Peters P M, , . Yb/Er-codoped and Yb-doped waveguide lasers in phosphate glass.Journal of Non-Crystalline Solids, 2000, 263–264: 369–381
CrossRef Google scholar
[23]
Tervonen A, West B R, Honkanen S K . Ion-exchanged glass waveguide technology: a review.Optical Engineering, 2011, 50(7): 071107
CrossRef Google scholar
[24]
Choi J, Bellec M, Royon A, , . Three-dimensional direct femtosecond laser writing of second-order nonlinearities in glass.Optics Letters, 2012, 37(6): 1029–1031
CrossRef Pubmed Google scholar
[25]
Royon A, Bourhis K, Bellec M, , . Silver clusters embedded in glass as a perennial high capacity optical recording medium.Advanced Materials, 2010, 22(46): 5282–5286
CrossRef Pubmed Google scholar
[26]
Azlan M N, Hajer S S, Halimah M K, , . Comprehensive comparison on optical properties of samarium oxide (micro/nano) particles doped tellurite glass for optoelectronics applications.Journal of Materials Science Materials in Electronics, 2021, 32(11): 14174–14185
CrossRef Google scholar
[27]
Oh Y J, Jeong K H . Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering.Advanced Materials, 2012, 24(17): 2234–2237
CrossRef Pubmed Google scholar
[28]
Kurobori T, Nakamura S . A novel disk-type X-ray area imaging detector using radiophotoluminescence in silver-activated phosphate glass.Radiation Measurements, 2012, 47(10): 1009–1013
CrossRef Google scholar
[29]
Kato M, Chida K, Moritake T, , . Direct dose measurement on patient during percutaneous coronary intervention procedures using radiophotoluminescence glass dosimeters.Radiation Protection Dosimetry, 2017, 175(1): 31–37
Pubmed
[30]
Werner S, Navaridas J, Luján M . A survey on optical network-on-chip architectures.ACM Computing Surveys, 2017, 50(6): 1–37
CrossRef Google scholar
[31]
Heidt A M, Li Z, Sahu J, , . 100 kW Peak power picosecond thulium-doped fiber amplifier system seeded by a gain-switched diode laser at 2 μm.Optics Letters, 2013, 38(10): 1615–1617
CrossRef Pubmed Google scholar
[32]
Li M, Huang S, Wang Q, , . Nonlinear lightwave circuits in chalcogenide glasses fabricated by ultrafast laser.Optics Letters, 2014, 39(3): 693–696
CrossRef Pubmed Google scholar
[33]
Najafi S I, Lefebvre P, Albert J, , . Ion-exchanged Mach‒Zehnder interferometers in glass.Applied Optics, 1992, 31(18): 3381–3383
CrossRef Pubmed Google scholar
[34]
Chakraborty P . Metal nanoclusters in glasses as non-linear photonic materials.Journal of Materials Science, 1998, 33(9): 2235–2249
CrossRef Google scholar
[35]
Haglund R F Jr . Ion implantation as a tool in the synthesis of practical third-order nonlinear optical materials.Materials Science and Engineering A, 1998, 253(1‒2): 275–283
CrossRef Google scholar
[36]
Weber M J, Milam D, Smith W L . Nonlinear refractive index of glasses and crystals.Optical Engineering, 1978, 17(5): 463–469
CrossRef Google scholar
[37]
Ryasnyansky A I, Palpant B, Debrus S, , . Nonlinear optical properties of copper nanoparticles synthesized in indium tin oxide matrix by Ion implantation.Journal of the Optical Society of America B, 2006, 23(7): 1348–1353
CrossRef Google scholar
[38]
Chemla D S, Miller D A B . Room-temperature excitonic nonlinear-optical effects in semiconductor quantum-well structures.Journal of the Optical Society of America B, 1985, 2(7): 1155–1173
CrossRef Google scholar
[39]
Kawabata A, Kubo R . Electronic properties of fine metallic particles.II. Plasma resonance absorption. Journal of the Physical Society of Japan, 1966, 21(9): 1765–1772
CrossRef Google scholar
[40]
Halperin W P . Quantum size effects in metal particles.Reviews of Modern Physics, 1986, 58(3): 533–606
CrossRef Google scholar
[41]
Haglund R F Jr, Yang L, Magruder R H III, , . Nonlinear optical properties of metal-quantum-dot composites synthesized by ion implantation.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1994, 91(1‒4): 493–504
CrossRef Google scholar
[42]
Garland J C, Tanner D B. Electrical Transport and Optical Properties of Inhomogeneous Media. New York, USA: American Institute of Physics, 1978
[43]
Li Y Q, Sung C C, Inguva R, , . Nonlinear-optical properties of semiconductor composite materials.Journal of the Optical Society of America B, 1989, 6(4): 814–817
CrossRef Google scholar
[44]
Hale D K . The physical properties of composite materials.Journal of Materials Science, 1976, 11(11): 2105–2141
CrossRef Google scholar
[45]
Haus J W, Kalyaniwalla N, Inguva R, , . Nonlinear-optical properties of conductive spheroidal particle composites.Journal of the Optical Society of America B, 1989, 6(4): 797–807
CrossRef Google scholar
[46]
Hou W, Cronin S B . A review of surface plasmon resonance-enhanced photocatalysis.Advanced Functional Materials, 2013, 23(13): 1612–1619
CrossRef Google scholar
[47]
Kabi S, Ghosh A . Structural investigation on silver phosphate glasses embedded with nanoparticles.Journal of Alloys and Compounds, 2012, 520: 238–243
CrossRef Google scholar
[48]
Wang Q Q, Han J B, Gong H M, , . Linear and nonlinear optical properties of Ag nanowire polarizing glass.Advanced Functional Materials, 2006, 16(18): 2405–2408
CrossRef Google scholar
[49]
Lin G, Pan H H, Qiu J R, , . Nonlinear optical properties of lead nanocrystals embedding glass induced by thermal treatment and femtosecond laser irradiation.Chemical Physics Letters, 2011, 516(4‒6): 186–191
CrossRef Google scholar
[50]
Qu S, Zhang Y, Li H, , . Nanosecond nonlinear absorption in Au and Ag nanoparticles precipitated glasses induced by a femtosecond laser.Optical Materials, 2006, 28(3): 259–265
CrossRef Google scholar
[51]
Lin G, Tan D Z, Luo F F, , . Linear and nonlinear optical properties of glasses doped with Bi nanoparticles.Journal of Non-Crystalline Solids, 2011, 357(11‒13): 2312–2315
CrossRef Google scholar
[52]
Hache F, Ricard D, Flytzanis C . Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects.Journal of the Optical Society of America B, 1986, 3(12): 1647–1655
CrossRef Google scholar
[53]
Christensen N E, Seraphin B O . Relativistic band calculation and the optical properties of gold.Physical Review B, 1971, 4(10): 3321–3344
CrossRef Google scholar
[54]
Hache F, Ricard D, Flytzanis C, , . The optical kerr effect in small metal particles and metal colloids: The case of gold.Applied Physics A: Materials Science & Processing, 1988, 47: 347–357
[55]
Liz-Marzán L M . Tailoring surface plasmons through the morphology and assembly of metal nanoparticles.Langmuir, 2006, 22(1): 32–41
CrossRef Pubmed Google scholar
[56]
El-Sayed M A . Some interesting properties of metals confined in time and nanometer space of different shapes.Accounts of Chemical Research, 2001, 34(4): 257–264
CrossRef Pubmed Google scholar
[57]
Link S, El-Sayed M A . Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals.International Reviews in Physical Chemistry, 2000, 19(3): 409–453
CrossRef Google scholar
[58]
Moores A, Goettmann F . The plasmon band in noble metal nanoparticles: an introduction to theory and applications.New Journal of Chemistry, 2006, 30(8): 1121–1132
CrossRef Google scholar
[59]
Jain P K, Lee K S, El-Sayed I H, , . Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.The Journal of Physical Chemistry B, 2006, 110(14): 7238–7248
CrossRef Pubmed Google scholar
[60]
Eustis S, El-Sayed M A . Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes.Chemical Society Reviews, 2006, 35(3): 209–217
CrossRef Pubmed Google scholar
[61]
De G, Medda S K, De S, , . Metal nanoparticle doped coloured coatings on glasses and plastics through tuning of surface plasmon band position.Bulletin of Materials Science, 2008, 31(3): 479–485
CrossRef Google scholar
[62]
Underwood S, Mulvaney P . Effect of the solution refractive index on the color of gold colloids.Langmuir, 1994, 10(10): 3427–3430
CrossRef Google scholar
[63]
Ghosh S K, Nath S, Kundu S, , . Solvent and ligand effects on the localized surface plasmon resonance (LSPR) of gold colloids.The Journal of Physical Chemistry B, 2004, 108(37): 13963–13971
CrossRef Google scholar
[64]
Rechberger W, Hohenau A, Leitner A, , . Optical properties of two interacting gold nanoparticles.Optics Communications, 2003, 220(1‒3): 137–141
CrossRef Google scholar
[65]
Jain P K, Qian W, El-Sayed M A . Ultrafast electron relaxation dynamics in coupled metal nanoparticles in aggregates.The Journal of Physical Chemistry B, 2006, 110(1): 136–142
CrossRef Pubmed Google scholar
[66]
Su K H, Wei Q H, Zhang X, , . Interparticle coupling effects on plasmon resonances of nanogold particles.Nano Letters, 2003, 3(8): 1087–1090
CrossRef Google scholar
[67]
Jain P K, Eustis S, El-Sayed M A . Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.The Journal of Physical Chemistry B, 2006, 110(37): 18243–18253
CrossRef Pubmed Google scholar
[68]
De S, De G . In-situ generation of Au nanoparticles in UV-curable refractive index controlled SiO2‒TiO2‒PEO hybrid films.The Journal of Physical Chemistry C, 2008, 112(28): 10378–10384
CrossRef Google scholar
[69]
Medda S K, Mitra M, De G . Tuning of Ag-SPR band position in refractive index controlled inorganic–organic hybrid SiO2–PEO–TiO2 films.Journal of Chemical Sciences, 2008, 120(6): 565–572
CrossRef Google scholar
[70]
Zhang J, Fu Y, Chowdhury M H, , . Plasmon-coupled fluorescence probes: effect of emission wavelength on fluorophore-labeled silver particles.The Journal of Physical Chemistry C, 2008, 112(25): 9172–9180
CrossRef Pubmed Google scholar
[71]
Zhang Y, Dragan A, Geddes C D . Wavelength dependence of metal-enhanced fluorescence.The Journal of Physical Chemistry C, 2009, 113(28): 12095–12100
CrossRef Google scholar
[72]
Zhang J, Fu Y, Chowdhury M H, , . Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles.Nano Letters, 2007, 7(7): 2101–2107
CrossRef Pubmed Google scholar
[73]
Katsuaki T . Field enhancement around metal nanoparticles and nanoshells: a systematic investigation.The Journal of Physical Chemistry C, 2008, 112(40): 15721–15728
CrossRef Google scholar
[74]
Zhu J . Spatial dependence of the local field enhancement in dielectric shell coated silver nanospheres.Applied Surface Science, 2007, 253(21): 8729–8733
CrossRef Google scholar
[75]
Jupri S A, Ghoshal S K, Yusof N N, , . Influence of surface plasmon resonance of Ag nanoparticles on photoluminescence of Ho3+ ions in magnesium‒zinc-sulfophosphate glass system.Optics and Laser Technology, 2020, 126: 106134
CrossRef Google scholar
[76]
Sontakke A D, Biswas K, Annapurna K . Concentration-dependent luminescence of Tb3+ ions in high calcium aluminosilicate glasses.Journal of Luminescence, 2009, 129(11): 1347–1355
CrossRef Google scholar
[77]
Karunakaran R T, Marimuthu K, Surendra Babu S, , . Structural, optical and thermal studies of Eu3+ ions in lithium fluoroborate glasses.Solid State Sciences, 2009, 11(11): 1882–1889
CrossRef Google scholar
[78]
Nageswara Raju C, Sailaja S, Hemasundara Raju S, , . Emission analysis of CdO–Bi2O3–B2O3 glasses doped with Eu3+ and Tb3+.Ceramics International, 2014, 40(6): 7701–7709
CrossRef Google scholar
[79]
Vařák P, Nekvindová P, Vytykáčová S, , . Near-infrared photoluminescence enhancement and radiative energy transfer in RE-doped zinc-silicate glass (RE = Ho, Er, Tm) after silver ion exchange.Journal of Non-Crystalline Solids, 2021, 557: 120580
CrossRef Google scholar
[80]
Canevali C, Mattoni M, Morazzoni F, , . Stability of luminescent trivalent cerium in silica host glasses modified by boron and phosphorus.Journal of the American Chemical Society, 2005, 127(42): 14681–14691
CrossRef Pubmed Google scholar
[81]
Cao W, Huang F, Wang Z, , . Controllable structural tailoring for enhanced luminescence in highly Er3+-doped germanosilicate glasses.Optics Letters, 2018, 43(14): 3281–3284
CrossRef Pubmed Google scholar
[82]
Huang F, E F, Lei R, , . Enhancing the Er3+: Infrared and mid-infrared emission performance in germanosilicate-zinc glasses.Journal of Luminescence, 2019, 213: 370–375
CrossRef Google scholar
[83]
Vijayakumar R, Marimuthu K . Luminescence studies on Ag nanoparticles embedded Eu3+ doped boro-phosphate glasses.Journal of Alloys and Compounds, 2016, 665: 294–303
CrossRef Google scholar
[84]
Kamrádek M, Kašík I, Aubrecht J, , . Nanoparticle and solution doping for efficient holmium fiber lasers.IEEE Photonics Journal, 2019, 11(5): 1–10
CrossRef Google scholar
[85]
Baker C C, Friebele E J, Burdett A A, , . Nanoparticle doping for high power fiber lasers at eye-safer wavelengths.Optics Express, 2017, 25(12): 13903–13915
CrossRef Pubmed Google scholar
[86]
Zhang W, Lin J, Cheng M, , . Radiative transition, local field enhancement and energy transfer microcosmic mechanism of tellurite glasses containing Er3+, Yb3+ ions and Ag nanoparticles.Journal of Quantitative Spectroscopy and Radiative Transfer, 2015, 159: 39–52
CrossRef Google scholar
[87]
Meng S, Zhao G, Hou J, , . High performance of near-infrared emission for S-band amplifier from Tm3+-doped bismuth glass incorporated with Ag nanoparticles.Journal of Luminescence, 2020, 224: 117313
CrossRef Google scholar
[88]
Sgibnev Y M, Nikonorov N V, Ignatiev A I . High efficient luminescence of silver clusters in ion-exchanged antimony-doped photo-thermo-refractive glasses: influence of antimony content and heat treatment parameters.Journal of Luminescence, 2017, 188: 172–179
CrossRef Google scholar
[89]
Zmojda J, Miluski P, Kochanowicz M . Nanocomposite antimony-germanate-borate glass fibers doped with Eu3+ ions with self-assembling silver nanoparticles for photonic applications.Applied Sciences, 2018, 8(5): 790
CrossRef Google scholar
[90]
Fares H, Elhouichet H, Gelloz B, , . Surface plasmon resonance induced Er3+ photoluminescence enhancement in tellurite glass.Journal of Applied Physics, 2015, 117(19): 193102
CrossRef Google scholar
[91]
Kichanov S E, Kozlenko D P, Gorshkova Y E, , . Structural studies of nanoparticles doped with rare-earth ions in oxyfluoride lead-silicate glasses.Journal of Nanoparticle Research, 2018, 20(3): 54
CrossRef Google scholar
[92]
Moskovits M . Surface-enhanced spectroscopy.Reviews of Modern Physics, 1985, 57(3): 783–826
CrossRef Google scholar
[93]
Nie S, Emory S R . Probing single molecules and single nanoparticles by surface-enhanced Raman scattering.Science, 1997, 275(5303): 1102–1106
CrossRef Pubmed Google scholar
[94]
Simo A, Joseph V, Fenger R, , . Long-term stable silver subsurface ion-exchanged glasses for SERS applications.ChemPhysChem, 2011, 12(9): 1683–1688
CrossRef Pubmed Google scholar
[95]
Haynes C L, McFarland A D, Van Duyne R P . Surface-enhanced Raman spectroscopy.Analytical Chemistry, 2005, 77(17): 338A–346A
CrossRef Google scholar
[96]
Schatz G C . Theoretical studies of surface enhanced Raman scattering.Accounts of Chemical Research, 1984, 17(10): 370–376
CrossRef Google scholar
[97]
Dousti M R, Sahar M R, Amjad R J, , . Surface enhanced Raman scattering and up-conversion emission by silver nanoparticles in erbium-zinc-tellurite glass.Journal of Luminescence, 2013, 143: 368–373
CrossRef Google scholar
[98]
Moskovits M . Surface-enhanced Raman spectroscopy: a brief perspective.In: Kneipp K, Moskovits M, Kneipp H, eds. Surface-enhanced Raman scattering. Topics in Applied Physics. Berlin, Heidelberg: Springer, 2006, 103
[99]
Campion A, Kambhampati P . Surface-enhanced Raman scattering.Chemical Society Reviews, 1998, 27(4): 241–250
CrossRef Google scholar
[100]
Qian X M, Nie S M . Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications.Chemical Society Reviews, 2008, 37(5): 912–920
CrossRef Pubmed Google scholar
[101]
Fleischmann M, Hendra P J, McQuillan A J . Raman spectra of pyridine adsorbed at a silver electrode.Chemical Physics Letters, 1974, 26(2): 163–166
CrossRef Google scholar
[102]
Liu D, Chen X, Hu Y, , . Raman enhancement on ultra-clean graphene quantum dots produced by quasi-equilibrium plasma-enhanced chemical vapor deposition.Nature Communications, 2018, 9: 193
CrossRef Pubmed Google scholar
[103]
Kneipp J, Kneipp H, Kneipp K . SERS — a single-molecule and nanoscale tool for bioanalytics.Chemical Society Reviews, 2008, 37(5): 1052–1060
CrossRef Pubmed Google scholar
[104]
Wells S M, Retterer S D, Oran J M, , . Controllable nanofabrication of aggregate-like nanoparticle substrates and evaluation for surface-enhanced Raman spectroscopy.ACS Nano, 2009, 3(12): 3845–3853
CrossRef Pubmed Google scholar
[105]
Wang H, Levin C S, Halas N J . Nanosphere arrays with controlled sub-10-nm gaps as surface-enhanced raman spectroscopy substrates.Journal of the American Chemical Society, 2005, 127(43): 14992–14993
CrossRef Pubmed Google scholar
[106]
Pal P, Bonyár A, Veres M, , . A generalized exponential relationship between the surface-enhanced Raman scattering (SERS) efficiency of gold/silver nanoisland arrangements and their non-dimensional interparticle distance/particle diameter ratio.Sensors and Actuators A: Physical, 2020, 314: 112225
CrossRef Google scholar
[107]
Chou C M, Thanh Thi L T, Quynh Nhu N T, , . Zinc oxide nanorod surface-enhanced Raman scattering substrates without and with gold nanoparticles fabricated through pulsed-laser-induced photolysis.Applied Sciences, 2020, 10(14): 5015
CrossRef Google scholar
[108]
Yahata A, Ishii H, Nakamura K, , . Three-dimensional periodic structures of gold nanoclusters in the interstices of sub-100 nm polymer particles toward surface-enhanced Raman scattering.Advanced Powder Technology, 2019, 30(12): 2957–2963
CrossRef Google scholar
[109]
Belusso L C S, Lenz G F, Fiorini E E, , . Synthesis of silver nanoparticles from bottom up approach on borophosphate glass and their applications as SERS, antibacterial and glass-based catalyst.Applied Surface Science, 2019, 473: 303–312
CrossRef Google scholar
[110]
Goodenough J B, Braga M H . Batteries for electric road vehicles.Dalton Transactions, 2018, 47(3): 645–648
CrossRef Pubmed Google scholar
[111]
Braga M H, Grundish N S, Murchison A J, , . Alternative strategy for a safe rechargeable battery.Energy & Environmental Science, 2017, 10(1): 331–336
CrossRef Google scholar
[112]
Mikolajczak C, Kahn M, White K, , . Lithium-Ion Batteries Hazard and Use Assessment.Springer, 2011, ISBN-13: 978–1461434856
[113]
Braga M H, Murchison A J, Ferreira J A, , . Glass-amorphous alkali-ion solid electrolytes and their performance in symmetrical cells.Energy & Environmental Science, 2016, 9(3): 948–954
CrossRef Google scholar
[114]
Kamaya N, Homma K, Yamakawa Y, , . A lithium superionic conductor.Nature Materials, 2011, 10(9): 682–686
CrossRef Pubmed Google scholar
[115]
Duclot M, Souquet J L . Glassy materials for lithium batteries: electrochemical properties and devices performances.Journal of Power Sources, 2001, 97‒98: 610–615
CrossRef Google scholar
[116]
Janek J, Zeier W G . A solid future for battery development.Nature Energy, 2016, 1(9): 16141
CrossRef Google scholar
[117]
Manuel Stephan A, Nahm K S . Review on composite polymer electrolytes for lithium batteries.Polymer, 2006, 47(16): 5952–5964
CrossRef Google scholar
[118]
Munshi M Z A. Handbook of Solid State Batteries and Capacitors. Singapore: World Scientific, 1995
[119]
Troy S, Schreiber A, Reppert T, , . Life cycle assessment and resource analysis of all-solid-state batteries.Applied Energy, 2016, 169: 757–767
CrossRef Google scholar
[120]
Mohamed E A, Nabhan E, Ratep A, , . Influence of BaTiO3 nanoparticles/clusters on the structural and dielectric properties of glasses-nanocomposites.Physical Review B: Condensed Matter, 2020, 589: 412220
CrossRef Google scholar
[121]
Mohamed E A, Moustafa M G, Kashif I . Microstructure, thermal, optical and dielectric properties of new glass nanocomposites of SrTiO3 nanoparticles/clusters in tellurite glass matrix.Journal of Non-Crystalline Solids, 2018, 482: 223–229
CrossRef Google scholar
[122]
Menazea A A, Abdelghany A M, Hakeem N A, , . Precipitation of silver nanoparticles in borate glasses by 1064 nm Nd:YAG nanosecond laser pulses: characterization and dielectric studies.Journal of Electronic Materials, 2020, 49(1): 826–832
CrossRef Google scholar
[123]
Menazea A A, Abdelghany A M, Hakeem N A, , . Nd:YAG nanosecond laser pulses for precipitation silver nanoparticles in silicate glasses: AC conductivity and dielectric studies.Silicon, 2020, 12(1): 13–20
CrossRef Google scholar
[124]
Abdel-Khalek E K, Elsharkawy M A, Motawea M A, , . Dielectric and thermal properties of tetragonal PbTiO3 nanoparticles/clusters embedded in lithium tetraborate glass matrix.Silicon, 2021, 13: 2993–3002
CrossRef Google scholar
[125]
Rejikumar P R, Jyothy P V, Mathew S, , . Effect of silver nanoparticles on the dielectric properties of holmium doped silica glass.Physical Review B: Condensed Matter, 2010, 405: 1513–1517
[126]
Abdelghany A M, Zeyada H M, ElBatal H A, , . AC conductivity and dielectric behavior of silicophosphate glass doped by Nd2O3.Silicon, 2017, 9(3): 347–354
CrossRef Google scholar
[127]
Yang K, Liu J, Shen B, , . Large improvement on energy storage and charge‒discharge properties of Gd2O3-doped BaO‒K2O‒Nb2O5‒SiO2 glass-ceramic dielectrics.Materials Science and Engineering B, 2017, 223: 178–184
CrossRef Google scholar
[128]
Fonseca J, Choi S . Electro-and photoelectro-catalysts derived from bimetallic amorphous metal-organic frameworks.Catalysis Science & Technology, 2020, 10(24): 8265–8282
CrossRef Google scholar
[129]
Ellis L D, Rorrer N A, Sullivan K P, , . Chemical and biological catalysis for plastics recycling and upcycling.Nature Catalysis, 2021, 4(7): 539–556
CrossRef Google scholar
[130]
Schlögl R . Heterogeneous catalysis.Angewandte Chemie International Edition, 2015, 54(11): 3465–3520
CrossRef Pubmed Google scholar
[131]
Gärtner D, Sandl S, Jacobi von Wangelin A . Homogeneous vs.heterogeneous: mechanistic insights into iron group metal-catalyzed reductions from poisoning experiments. Catalysis Science & Technology, 2020, 10(11): 3502–3514
CrossRef Google scholar
[132]
Lee A F, Bennett J A, Manayil J C, , . Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification.Chemical Society Reviews, 2014, 43(22): 7887–7916
CrossRef Pubmed Google scholar
[133]
Khan S A, Khan N, Irum U, , . Cellulose acetate-Ce/Zr@Cu0 catalyst for the degradation of organic pollutant.International Journal of Biological Macromolecules, 2020, 153: 806–816
CrossRef Pubmed Google scholar
[134]
Gao C, Lyu F, Yin Y . Encapsulated metal nanoparticles for catalysis.Chemical Reviews, 2021, 121(2): 834–881
CrossRef Pubmed Google scholar
[135]
Jin R, Li G, Sharma S, , . Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures.Chemical Reviews, 2021, 121(2): 567–648
CrossRef Pubmed Google scholar
[136]
Majhi S, Sharma K, Singh R, , . Development of silver nanoparticles decorated on functional glass slide as highly efficient and recyclable dip catalyst.ChemistrySelect, 2020, 5(40): 12365–12370
CrossRef Google scholar
[137]
Mennecke K, Cecilia R, Glasnov T N, , . Palladium(0) nanoparticles on glass‒polymer composite materials as recyclable catalysts: a comparison study on their use in batch and continuous flow processes.Advanced Synthesis & Catalysis, 2008, 350(5): 717–730
CrossRef Google scholar
[138]
Elhage A, Wang B, Marina N, , . Glass wool: a novel support for heterogeneous catalysis.Chemical Science, 2018, 9(33): 6844–6852
CrossRef Pubmed Google scholar
[139]
Lenz G F, Schneider R, Rossi de Aguiar K M F, , . Self-supported nickel nanoparticles on germanophosphate glasses: synthesis and applications in catalysis.RSC Advances, 2019, 9(30): 17157–17164
CrossRef Pubmed Google scholar
[140]
Luo X, Meng M, Li R, , . Honeycomb-like porous metallic glasses decorated by Cu nanoparticles formed by one-pot electrochemically galvanostatic etching.Materials & Design, 2020, 196: 109109
CrossRef Google scholar
[141]
Zheng K, Boccaccini A R . Sol-gel processing of bioactive glass nanoparticles: a review.Advances in Colloid and Interface Science, 2017, 249: 363–373
CrossRef Pubmed Google scholar
[142]
Brauer D S . Bioactive glasses — structure and properties.Angewandte Chemie International Edition, 2015, 54(14): 4160–4181
CrossRef Pubmed Google scholar
[143]
Jones J R . Review of bioactive glass: from Hench to hybrids.Acta Biomaterialia, 2013, 9(1): 4457–4486
CrossRef Pubmed Google scholar
[144]
Miguez-Pacheco V, Hench L L, Boccaccini A R . Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues.Acta Biomaterialia, 2015, 13: 1–15
CrossRef Pubmed Google scholar
[145]
Baino F, Novajra G, Miguez-Pacheco V, , . Bioactive glasses: special applications outside the skeletal system.Journal of Non-Crystalline Solids, 2016, 432: 15–30
CrossRef Google scholar
[146]
Hench L L, Splinter R J, Allen W C, , . Bonding mechanisms at the interface of ceramic prosthetic materials.Journal of Biomedical Materials Research, 1971, 5(6): 117–141
CrossRef Google scholar
[147]
Erol-Taygun M, Zheng K, Boccaccini A R . Nanoscale bioactive glasses in medical applications.International Journal of Applied Glass Science, 2013, 4(2): 136–148
CrossRef Google scholar
[148]
Vichery C, Nedelec J M . Bioactive glass nanoparticles: from synthesis to materials design for biomedical applications.Materials, 2016, 9(4): 288–295
CrossRef Pubmed Google scholar
[149]
Hum J, Boccaccini A R . Bioactive glasses as carriers for bioactive molecules and therapeutic drugs: a review.Journal of Materials Science: Materials in Medicine, 2012, 23(10): 2317–2333
CrossRef Pubmed Google scholar
[150]
Wu C, Fan W, Chang J . Functional mesoporous bioactive glass nanospheres: synthesis, high loading efficiency, controllable delivery of doxorubicin and inhibitory effect on bone cancer cells.Journal of Materials Chemistry B, 2013, 1(21): 2710–2718
CrossRef Pubmed Google scholar
[151]
Blackburn G, Scott T G, Bayer I S, , . Bionanomaterials for bone tumor engineering and tumor destruction.Journal of Materials Chemistry B, 2013, 1(11): 1519–1534
CrossRef Pubmed Google scholar
[152]
Jayalekshmi A C, Victor S P, Sharma C P . Magnetic and degradable polymer/bioactive glass composite nanoparticles for biomedical applications.Colloids and Surfaces B: Biointerfaces, 2013, 101: 196–204
CrossRef Pubmed Google scholar
[153]
Wu C, Fan W, Zhu Y, , . Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure.Acta Biomaterialia, 2011, 7(10): 3563–3572
CrossRef Pubmed Google scholar
[154]
Shih S J, Tzeng W L, Jatnika R, , . Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis.Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015, 103(4): 899–907
CrossRef Pubmed Google scholar
[155]
Li J, Zhai D, Lv F, , . Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing.Acta Biomaterialia, 2016, 36: 254–266
CrossRef Pubmed Google scholar
[156]
Ventura M G, Parola A J, Pires de Matos A . Influence of heat treatment on the colour of Au and Ag glasses produced by the sol-gel pathway.Journal of Non-Crystalline Solids, 2011, 357(4): 1342–1349
CrossRef Google scholar
[157]
Mazzold P, Carturan S, Quaranta A, , . Ion exchange process: history, evolution and applications.Rivista del Nuovo Cimento, 2013, 36: 397–460
CrossRef Google scholar
[158]
Molina G, Murcia S, Molera J, , . Color and dichroism of silver-stained glasses.Journal of Nanoparticle Research, 2013, 15(9): 1932
CrossRef Google scholar
[159]
Pradell T, Molera J, Roque J, , . Ionic-exchange mechanism in the formation of medieval luster decorations.Journal of the American Ceramic Society, 2005, 88(5): 1281–1289
CrossRef Google scholar
[160]
Palomar T, Redol P, Cruz Almeida I, , . The influence of environment in the alteration of the stained-glass windows in Portuguese monuments.Heritage, 2018, 1(2): 365–376
CrossRef Google scholar
[161]
Palomar T, Grazia C, Pombo Cardoso I, , . Analysis of chromophores in stained-glass windows using visible hyperspectral imaging in-situ.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 223: 117378
CrossRef Pubmed Google scholar
[162]
Machado C, Machado A, Palomar T, , . Debitus grisailles for stained-glass conservation: an analytical study.Conservar Património, 2020, 34: 65–72
CrossRef Google scholar
[163]
Gonella F, Mazzoldi P . Chapter 2: Metal nanocluster composite glasses.Handbook of Nanostructured Materials and Nanotechnology, 2000, 4: 81–158
[164]
Liu L C, Risbud S H . Quantum-dot size-distribution analysis and precipitation stages in semiconductor doped glasses.Journal of Applied Physics, 1990, 68(1): 28–32
CrossRef Google scholar
[165]
Machado T M, Falci R F, Silva I L, , . Erbium 1.55 μm luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses.Materials Chemistry and Physics, 2019, 224: 73–78
CrossRef Google scholar
[166]
Machado T M, Falci R F, Andrade G F S, , . Unprecedented multiphonon vibronic transitions of erbium ions on copper nanoparticle-containing tellurite glasses.Physical Chemistry Chemical Physics, 2020, 22(23): 13118–13122
CrossRef Pubmed Google scholar
[167]
Rajaramakrishna R, Saiyasombat C, Anavekar R V, , . Structure and nonlinear optical studies of Au nanoparticles embedded in lead lanthanum borate glass.Journal of Non-Crystalline Solids, 2014, 406: 107–110
CrossRef Google scholar
[168]
Rajaramakrishna R, Karuthedath S, Anavekar R V, , . Nonlinear optical studies of lead lanthanum borate glass doped with Au nanoparticles.Journal of Non-Crystalline Solids, 2012, 358(14): 1667–1672
CrossRef Google scholar
[169]
Chen F, Dai S, Xu T, , . Surface-plasmon enhanced ultrafast third-order optical nonlinearities in ellipsoidal gold nanoparticles embedded bismuthate glasses.Chemical Physics Letters, 2011, 514(1‒3): 79–82
CrossRef Google scholar
[170]
Ma R, Qian J, Cui S, , . Enhancing NIR emission of Yb3+ by silver nanoclusters in oxyfluoride glass.Journal of Luminescence, 2014, 152: 222–225
CrossRef Google scholar
[171]
Guo Z, Ye S, Liu T, , . SmF3 doping and heat treatment manipulated Ag species evaluation and efficient energy transfer from Ag nanoclusters to Sm3+ ions in oxyfluoride glass.Journal of Non-Crystalline Solids, 2017, 458: 80–85
CrossRef Google scholar
[172]
Singh S P, Karmakar B . Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag:bismuth glass nanocomposites.Plasmonics, 2011, 6(3): 457–467
CrossRef Google scholar
[173]
Venkateswara Rao G, Shashikala H D . Effect of heat treatment on optical, dielectric and mechanical properties of silver nanoparticle embedded CaO‒CaF2‒P2O5 glass.Journal of Alloys and Compounds, 2015, 622: 108–114
CrossRef Google scholar
[174]
Swetha B N, Keshavamurthy K . Impact of thermal annealing time on luminescence properties of Eu3+ ions in silver nanoparticles embedded lanthanum sodium borate glasses.Applied Surface Science, 2020, 525: 146505
CrossRef Google scholar
[175]
Mohammed Danmallam I, Ghoshal S K, Ariffin R, , . Europium luminescence in silver and gold nanoparticles co-embedded phosphate glasses: Judd‒Ofelt calculation.Optical Materials, 2020, 105: 109889
CrossRef Google scholar
[176]
Qiu J, Shirai M, Nakaya T, , . Space-selective precipitation of metal nanoparticles inside glasses.Applied Physics Letters, 2002, 81(16): 3040–3042
CrossRef Google scholar
[177]
Qiu J, Jiang X, Zhu C, , . Manipulation of gold nanoparticles inside transparent materials.Angewandte Chemie International Edition, 2004, 43(17): 2230–2234
CrossRef Pubmed Google scholar
[178]
Hu X, Zhao Q, Jiang X, , . Space-selective co-precipitation of silver and gold nanoparticles in femtosecond laser pulses irradiated Ag+, Au3+ co-doped silicate glass.Solid State Communications, 2006, 138(1): 43–46
CrossRef Google scholar
[179]
Teng Y, Qian B, Jiang N, , . Light and heat driven precipitation of copper nanoparticles inside Cu2+-doped borate glasses.Chemical Physics Letters, 2010, 485(1‒3): 91–94
CrossRef Google scholar
[180]
Almeida J M P, De Boni L, Avansi W, , . Generation of copper nanoparticles induced by fs-laser irradiation in borosilicate glass.Optics Express, 2012, 20(14): 15106–15113
CrossRef Pubmed Google scholar
[181]
Chen S, Akai T, Kadono K, , . Reversible control of silver nanoparticle generation and dissolution in soda-lime silicate glass through X-ray irradiation and heat treatment.Applied Physics Letters, 2001, 79(22): 3687–3689
CrossRef Google scholar
[182]
Sheng J, Kadono K, Yazawa T . Nanosized gold clusters formation in selected areas of soda-lime silicate glass.Journal of Non-Crystalline Solids, 2003, 324(3): 295–299
CrossRef Google scholar
[183]
Valentin E, Bernas H, Ricolleau C, , . Ion beam “photography”: decoupling nucleation and growth of metal clusters in glass.Physical Review Letters, 2001, 86(1): 99–102
CrossRef Pubmed Google scholar
[184]
Farag H K, Marzouk M A . Preparation and characterization of nanostructured nickel oxide and its influence on the optical properties of sodium zinc borate glasses.Journal of Materials Science: Materials in Electronics, 2017, 28(20): 15480–15487
CrossRef Google scholar
[185]
Asyikin A S, Halimah M K, Latif A A, , . Physical, structural and optical properties of bio-silica borotellurite glass system doped with samarium oxide nanoparticles.Journal of Non-Crystalline Solids, 2020, 529: 119777
CrossRef Google scholar
[186]
Orives J R, Viali W R, Magnani M, , . Incorporation of CdFe2O4‒SiO2 nanoparticles in SbPO4‒ZnO‒PbO glasses by melt-quenching process.Eclética Química Journal, 2018, 43(2): 32–43
CrossRef Google scholar
[187]
Widanarto W, Sahar M R, Ghoshal S K, , . Thermal, structural and magnetic properties of zinc-tellurite glasses containing natural ferrite oxide.Materials Letters, 2013, 108: 289–292
CrossRef Google scholar
[188]
Widanarto W, Sahar M R, Ghoshal S K, , . Effect of natural Fe3O4 nanoparticles on structural and optical properties of Er3+ doped tellurite glass.Journal of Magnetism and Magnetic Materials, 2013, 326: 123–128
CrossRef Google scholar
[189]
Anigrahawati P, Sahar M R, Ghoshal S K . Influence of Fe3O4 nanoparticles on structural, optical and magnetic properties of erbium doped zinc phosphate glass.Materials Chemistry and Physics, 2015, 155: 155–161
CrossRef Google scholar
[190]
Franco D F, Sant’Ana A C, De Oliveira L F C, , . The Sb2O3 redox route to obtain copper nanoparticles in glasses with plasmonic properties.Journal of Materials Chemistry C, 2015, 3(15): 3803–3808
CrossRef Google scholar
[191]
Egorova O N, Semjonov S L, Velmiskin V V, , . Phosphate-core silica-clad Er/Yb-doped optical fiber and cladding pumped laser.Optics Express, 2014, 22(7): 7632–7637
CrossRef Pubmed Google scholar
[192]
Sathi Z M, Zhang J, Luo Y, , . Improving broadband emission within Bi/Er doped silicate fibres with Yb co-doping.Optical Materials Express, 2015, 5(10): 2096–2105
CrossRef Google scholar
[193]
Wei T, Chen F, Tian Y, , . Broadband near-infrared emission property in Er3+/Ce3+ co-doped silica-germanate glass for fiber amplifier.Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 126: 53–58
CrossRef Pubmed Google scholar
[194]
Chen D D, Qian Q, Peng M Y, , . Effect of Ce3+, Dy3+, and Tb3+ additions on the spectroscopic properties of Er3+/Yb3+ codoped tellurite glasses.Physica B: Condensed Matter, 2010, 405(21): 4453–4456
CrossRef Google scholar
[195]
Li L, Yang Y, Zhou D, , . Influence of the Eu2+ on the silver aggregates formation in Ag+–Na+ ion-exchanged Eu3+-doped sodium-aluminosilicate glasses.Journal of the American Ceramic Society, 2014, 97(4): 1110–1114
CrossRef Google scholar
[196]
Worsch C, Büttner M, Schaaf P, , . Magnetic properties of multicore magnetite nanoparticles prepared by glass crystallization.Journal of Materials Science, 2013, 48(6): 2299–2307
CrossRef Google scholar
[197]
Harizanova R, Völksch G, Rüssel C . Microstructures formed during devitrification of Na2O·Al2O3·B2O3·SiO2·Fe2O3 glasses.Journal of Materials Science, 2010, 45(5): 1350–1353
CrossRef Google scholar
[198]
Worsch C, Schaaf P, Harizanova R, , . Magnetisation effects of multicore magnetite nanoparticles crystallised from a silicate glass.Journal of Materials Science, 2012, 47(15): 5886–5890
CrossRef Google scholar
[199]
Woltz S, Hiergeist R, Görnert P, , . Magnetite nanoparticles prepared by the glass crystallization method and their physical properties.Journal of Magnetism and Magnetic Materials, 2006, 298(1): 7–13
CrossRef Google scholar
[200]
Burda C, Chen X, Narayanan R, , . Chemistry and properties of nanocrystals of different shapes.Chemical Reviews, 2005, 105(4): 1025–1102
CrossRef Pubmed Google scholar
[201]
Maurer R D . Nucleation and growth in a photosensitive glass.Journal of Applied Physics, 1958, 29(1): 1–8
CrossRef Google scholar
[202]
Zhang K, Zhou D, Qiu J, , . Silver nanoparticles enhanced luminescence and stability of CsPbBr3 perovskite quantum dots in borosilicate glass.Journal of the American Ceramic Society, 2020, 103(4): 2463–2470
CrossRef Google scholar
[203]
Manzani D, Almeida J M P, Napoli M, , . Nonlinear optical properties of tungsten lead-pyrophosphate glasses containing metallic copper nanoparticles.Plasmonics, 2013, 8(4): 1667–1674
CrossRef Google scholar
[204]
Qiu J, Zhu C, Nakaya T, , . Space-selective valence state manipulation of transition metal ions inside glasses by a femtosecond laser.Applied Physics Letters, 2001, 79(22): 3567–3569
CrossRef Google scholar
[205]
Zeng H, Qiu J, Ye Z, , . Irradiation assisted fabrication of gold nanoparticles-doped glasses.Journal of Crystal Growth, 2004, 267(1‒2): 156–160
CrossRef Google scholar
[206]
Hosono H, Matsunami N, Kudo A, , . Novel approach for synthesizing Ge fine particles embedded in glass by ion implantation: formation of Ge nanocrystal in SiO2‒GeO2 glasses by proton implantation.Applied Physics Letters, 1994, 65(13): 1632–1634
CrossRef Google scholar
[207]
Hosono H, Kawamura K, Kameshima Y, , . Nanometer-sized Ge particles in GeO2–SiO2 glasses produced by proton implantation: combined effects of electronic excitation and chemical reaction.Journal of Applied Physics, 1997, 82(9): 4232–4235
CrossRef Google scholar
[208]
Lifshitz I M, Slyozov V V . The kinetics of precipitation from supersaturated solid solutions.Journal of Physics and Chemistry of Solids, 1961, 19(1‒2): 35–50
CrossRef Google scholar
[209]
Houk L R, Challa S R, Grayson B, , . The definition of “critical radius” for a collection of nanoparticles undergoing Ostwald ripening.Langmuir, 2009, 25(19): 11225–11227
CrossRef Pubmed Google scholar
[210]
Azlina Y, Azlan M N, Halimah M K, , . Optical performance of neodymium nanoparticles doped tellurite glasses.Physica B: Condensed Matter, 2020, 577: 411784
CrossRef Google scholar
[211]
Muhammad Noorazlan A, Mohamed Kamari H, Zulkefly S S, , . Effect of erbium nanoparticles on optical properties of zinc borotellurite glass system.Journal of Nanomaterials, 2013, 2013: 940917
CrossRef Google scholar
[212]
Halimah M K, Awshah A A, Hamza A M, , . Effect of neodymium nanoparticles on optical properties of zinc tellurite glass system.Journal of Materials Science: Materials in Electronics, 2020, 31(5): 3785–3794
CrossRef Google scholar
[213]
Orives J R, Viali W R, Santagneli S H, , . Phosphate glasses via coacervation route containing CdFe2O4 nanoparticles: structural, optical and magnetic characterization.Dalton transactions, 2018, 47(16): 5771–5779
CrossRef Pubmed Google scholar
[214]
Orives J R, Pichon B P, Mertz D, , . Phosphate glasses containing monodisperse Fe3−δO4@SiO2 stellate nanoparticles obtained by melt-quenching process.Ceramics International, 2020, 46(8): 12120–12127
CrossRef Google scholar
[215]
Hench L L, West J K . The sol-gel process.Chemical Reviews, 1990, 90(1): 33–72
CrossRef Google scholar
[216]
Graham T . On the properties of silicic acid and other analogous colloidal substances.Journal of the Chemical Society, 1864, 17: 318–327
CrossRef Google scholar
[217]
Dislich H . New routes to multicomponent oxide glasses.Angewandte Chemie International Edition, 1971, 10(6): 363–370
CrossRef Google scholar
[218]
Yoldas B E . Monolithic glass formation by chemical polymerization.Journal of Materials Science, 1979, 14(8): 1843–1849
CrossRef Google scholar
[219]
Razdobreev I, El Hamzaoui H, Ivanov V Y, , . Optical spectroscopy of bismuth-doped pure silica fiber preform.Optics Letters, 2010, 35(9): 1341–1343
CrossRef Pubmed Google scholar
[220]
Vallet-Regí M . Ceramics for medical applications.Journal of the Chemical Society — Dalton Transactions: Inorganic Chemistry, 2001, 2(2): 97–108
CrossRef Google scholar
[221]
Kaur G, Pickrell G, Sriranganathan N, , . Review and the state of the art: sol-gel and melt quenched bioactive glasses for tissue engineering.Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2016, 104(6): 1248–1275
CrossRef Pubmed Google scholar
[222]
El Hamzaoui H, Bigot L, Bouwmans G, , . From molecular precursors in solution to microstructured optical fiber: a sol-gel polymeric route.Optical Materials Express, 2011, 1(2): 234–242
CrossRef Google scholar
[223]
Brinker C J, Scherer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing. New York, USA: Academic Press, 1990
[224]
Zarzycki J, Prassas M, Phalippou J . Synthesis of glasses from gels: the problem of monolithic gels.Journal of Materials Science, 1982, 17(11): 3371–3379
CrossRef Google scholar
[225]
Ulrich D R . Prospects of sol-gel processes.Journal of Non-Crystalline Solids, 1988, 100(1‒3): 174–193
CrossRef Google scholar
[226]
Kirkbir F, Murata H, Meyers D, , . Drying and sintering of sol-gel derived large SiO2 monoliths.Journal of Sol-Gel Science and Technology, 1996, 6(3): 203–217
CrossRef Google scholar
[227]
Kajihara K . Recent advances in sol-gel synthesis of monolithic silica and silica-based glasses.Journal of Asian Ceramic Societies, 2013, 1(2): 121–133
CrossRef Google scholar
[228]
Adachi T, Sakka S . Preparation of monolithic silica gel and glass by the sol-gel method using N, N-dimethylformamide.Journal of Materials Science, 1987, 22(12): 4407–4410
CrossRef Google scholar
[229]
Chan J B, Jonas J . Effect of various amide additives on the tetramethoxysilane sol-gel process.Journal of Non-Crystalline Solids, 1990, 126(1‒2): 79–86
CrossRef Google scholar
[230]
Kirkbir F, Murata H, Meyers D, , . Drying of large monolithic aerogels between atmospheric and supercritical pressures.Journal of Sol-Gel Science and Technology, 1998, 13(1/3): 311–316
CrossRef Google scholar
[231]
Iler R K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. New York, USA: John Wiley and Sons Ltd., 1979
[232]
Yamane M, Aso S, Okano S, , . Low temperature synthesis of a monolithic silica glass by the pyrolysis of a silica gel.Journal of Materials Science, 1979, 14(3): 607–611
CrossRef Google scholar
[233]
Hæreid S, Einarsrud M A, Scherer G W . Mechanical strengthening of TMOS-based alcogels by aging in silane solutions.Journal of Sol-Gel Science and Technology, 1994, 3: 199–204
CrossRef Google scholar
[234]
Kawaguchi T, Hishikura H, Iura J, , . Monolithic dried gels and silica glass prepared by the sol-gel process.Journal of Non-Crystalline Solids, 1984, 63(1‒2): 61–69
CrossRef Google scholar
[235]
Sarkar A, Chaudhuri S R, Wang S, , . Drying of alkoxide gels-observation of an alternate phenomenology.Journal of Sol-Gel Science and Technology, 1994, 2(1‒3): 865–870
CrossRef Google scholar
[236]
Murata H, Meyers D E, Kirkbir F, , . Drying and sintering of bulk silica gels.Journal of Sol-Gel Science and Technology, 1997, 8(1‒3): 397–402
CrossRef Google scholar
[237]
Scherer G W, Smith D M . Cavitation during drying of a gel.Journal of Non-Crystalline Solids, 1995, 189(3): 197–211
CrossRef Google scholar
[238]
Smith D M, Stein D, Anderson J M, , . Preparation of low-density xerogels at ambient pressure.Journal of Non-Crystalline Solids, 1995, 186: 104–112
CrossRef Google scholar
[239]
Susa K, Matsuyama I, Satoh S, , . Sol-gel derived Ge-doped silica glass for optical fiber application: I.Preparation of gel and glass and their characterization. Journal of Non-Crystalline Solids, 1990, 119(1): 21–28
CrossRef Google scholar
[240]
Susa K, Matsuyama I, Satoh S . Sol-gel derived Ge-doped silica glass for optical fiber application.II. Excess optical loss. Journal of Non-Crystalline Solids, 1991, 128(2): 118–125
CrossRef Google scholar
[241]
Breitscheidel B, Zieder J, Schubert U . Metal complexes in inorganic matrices.7. Nanometer-sized, uniform metal particles in a silica matrix by sol-gel processing of metal complexes. Chemistry of Materials, 1991, 3(3): 559–566
CrossRef Google scholar
[242]
Lembacher C, Schubert U . Nanosized platinum particles by sol-gel processing of tethered metal complexes: influence of the precursors and the organic group removal method on the particle size.New Journal of Chemistry, 1998, 22(7): 721–724
CrossRef Google scholar
[243]
Trimmel G, Lembacher C, Kickelbick G, , . Sol-gel processing of alkoxysilyl-substituted nickel complexes for the preparation of highly dispersed nickel in silica.New Journal of Chemistry, 2002, 26(6): 759–765
CrossRef Google scholar
[244]
Lukehart C M, Milne S B, Stock S R . Formation of crystalline nanoclusters of Fe2P, RuP, Co2P, Rh2P, Ni2P, Pd5P2, or PtP2 in a silica xerogel matrix from single-source molecular precursors.Chemistry of Materials, 1998, 10(3): 903–908
CrossRef Google scholar
[245]
Carpenter J P, Lukehart C M, Stock S R, , . Formation of a nanocomposite containing particles of Co3C from a single-source precursor bound to a silica xerogel host matrix.Chemistry of Materials, 1995, 7(1): 201–205
CrossRef Google scholar
[246]
Carpenter J P, Lukehart C M, Henderson D O, , . Formation of crystalline germanium nanoclusters in a silica xerogel matrix from an organogermanium precursor.Chemistry of Materials, 1996, 8(6): 1268–1274
CrossRef Google scholar
[247]
Carpenter J P, Lukehart C M, Milne S B, , . Organometallic compounds as single-source precursors to nanocomposite materials: an overview.Journal of Organometallic Chemistry, 1998, 557(1): 121–130
CrossRef Google scholar
[248]
Mathieu H, Richard T, Allègre J, , . Quantum confinement effects of CdS nanocrystals in a sodium borosilicate glass prepared by the sol-gel process.Journal of Applied Physics, 1995, 77(1): 287–293
CrossRef Google scholar
[249]
Zhong J, Ma X, Lu H, , . Preparation and optical properties of sodium borosilicate glasses containing Sb nanoparticles.Journal of Alloys and Compounds, 2014, 607: 177–182
CrossRef Google scholar
[250]
Zhong J, Xiang W, Zhao H, , . Synthesis, characterization, and third-order nonlinear optical properties of copper quantum dots embedded in sodium borosilicate glass.Journal of Alloys and Compounds, 2012, 537: 269–274
CrossRef Google scholar
[251]
Pei L, Liang X, Cai W, , . Photocatalytic activity in monodisperse In2O3 nanocrystals incorporated into transparent silica glassy matrix.Journal of Alloys and Compounds, 2015, 626: 131–135
CrossRef Google scholar
[252]
Gao H, Xiang W, Ma X, , . Sol-gel synthesis and third-order optical nonlinearity of Au nanoparticles doped monolithic glass.Gold Bulletin, 2015, 48(3‒4): 153–159
CrossRef Google scholar
[253]
Zhong J, Xiang W . Sol-gel synthesis and third-order nonlinear optical properties of Cu3.8Ni nanoparticles doped glass.Journal of Non-Crystalline Solids, 2017, 462: 17–22
CrossRef Google scholar
[254]
Huang Y, Xiang W, Lin S, , . The synthesis of bimetallic gold plus nickel nanoparticles dispersed in a glass host and behavior-enhanced optical nonlinearities.Journal of Non-Crystalline Solids, 2017, 459: 142–149
CrossRef Google scholar
[255]
Zhang Y, Jin Y, He M, , . Optical properties of bimetallic Au‒Cu nanocrystals embedded in glass.Materials Research Bulletin, 2018, 98: 94–102
CrossRef Google scholar
[256]
Le Rouge A, El Hamzaoui H, Capoen B, , . Synthesis and nonlinear optical properties of zirconia-protected gold nanoparticles embedded in sol-gel derived silica glass.Materials Research Express, 2015, 2(5): 055009
CrossRef Google scholar
[257]
Campos-Zuñiga E E, Alonso-Lemus I L, Agarwal V, , . Sol-gel synthesis for stable green emission in samarium doped borosilicate glasses.Ceramics International, 2019, 45(18): 24052–24059
CrossRef Google scholar
[258]
Schubert U, Amberg-Schwab S, Breitscheidel B . Metal complexes in inorganic matrices.4. Small metal particles in palladium‒silica composites by sol-gel processing of metal complexes. Chemistry of Materials, 1989, 1(6): 576–578
CrossRef Google scholar
[259]
Schubert U . Metal oxide/silica and metal/silica nanocomposites from organofunctional single-source sol-gel precursors.Advanced Engineering Materials, 2004, 6(3): 173–176
CrossRef Google scholar
[260]
Schubert U . Preparation of metal oxide or metal nanoparticles in silica via metal coordination to organofunctional trialkoxysilanes.Polymer International, 2009, 58(3): 317–322
CrossRef Google scholar
[261]
Trimmel G, Schubert U . Sol-gel processing of tethered metal complexes: influence of the metal and the complexing alkoxysilane on the texture of the obtained silica gels.Journal of Non-Crystalline Solids, 2001, 296(3): 188–200
CrossRef Google scholar
[262]
Moerke W, Lamber R, Schubert U, , . Metal complexes in inorganic matrices.11. Composition of highly dispersed bimetallic Ni, Pd alloy particles prepared by sol-gel processing: electron microscopy and FMR study. Chemistry of Materials, 1994, 6(10): 1659–1666
CrossRef Google scholar
[263]
Kaiser A, Görsmann C, Schubert U . Influence of the metal complexation on size and composition of Cu/Ni nano-particles prepared by sol-gel processing.Journal of Sol-Gel Science and Technology, 1997, 8(1‒3): 795–799
CrossRef Google scholar
[264]
Malenovska M, Neouze M A, Schubert U, , . Multi-component hybrid organic‒inorganic particles with highly dispersed silver nanoparticles in the external shell.Dalton Transactions, 2008, (34): 4647–4651
CrossRef Pubmed Google scholar
[265]
Reisfeld R . Prospects of sol-gel technology towards luminescent materials.Optical Materials, 2001, 16(1‒2): 223707
CrossRef Google scholar
[266]
Yang G, Cheng S, Li C, , . Investigation of the oxidation states of Cu additive in colored borosilicate glasses by electron energy loss spectroscopy.Journal of Applied Physics, 2014, 116(22): 1–6
CrossRef Google scholar
[267]
Yanes A C, Santana-Alonso A, Méndez-Ramos J, , . Novel sol-gel nano-glass-ceramics comprising Ln3+-doped YF3 nanocrystals: structure and high efficient UV up-conversion.Advanced Functional Materials, 2011, 21(16): 3136–3142
CrossRef Google scholar
[268]
Zhang M, Fan H, Xi B, , . Synthesis, characterization, and luminescence properties of uniform Ln3+-doped YF3 nanospindles.The Journal of Physical Chemistry C, 2007, 111(18): 6652–6657
CrossRef Google scholar
[269]
Wang G, Qin W, Zhang J, , . Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles.The Journal of Physical Chemistry C, 2008, 112(32): 12161–12167
CrossRef Google scholar
[270]
Kalwarczyk E, Kabaciński P, Kardaś T M, , . A Seedless method for gold nanoparticle growth inside a silica matrix: fabrication of materials capable of third-harmonic generation in the near-infrared.ChemPlusChem, 2019, 84(5): 525–533
CrossRef Pubmed Google scholar
[271]
Melnikov P, Arkhangelsky I V, Nascimento V A, , . Thermolysis mechanism of samarium nitrate hexahydrate.Journal of Thermal Analysis and Calorimetry, 2014, 118(3): 1537–1541
CrossRef Google scholar
[272]
Gaddam A, Fernandes H R, Tulyaganov D U, , . The structural role of lanthanum oxide in silicate glasses.Journal of Non-Crystalline Solids, 2019, 505: 18–27
CrossRef Google scholar
[273]
Harper C A. Handbook of Ceramics, Glasses, and Diamonds.New York, USA: McGraw-Hill, 2001
[274]
Pope E J A, Mackenzie J D . Nd-doped silica glass I: structural evolution in the sol-gel state.Journal of Non-Crystalline Solids, 1988, 106(1‒3): 236–241
CrossRef Google scholar
[275]
Campostrini R, Carturan G, Ferrari M, , . Luminescence of Eu3+ ions during thermal densification of SiO2 gel.Journal of Materials Research, 1992, 7(3): 745–753
CrossRef Google scholar
[276]
Pope E J A, Mackenzie J D . Sol-gel processing of neodymian-silica glass.Journal of the American Ceramic Society, 1993, 76(5): 1325–1328
CrossRef Google scholar
[277]
Chakrabarti S, Sahu J, Chakraborty M, , . Monophasic silica glasses with large neodymia concentration.Journal of Non-Crystalline Solids, 1994, 180(1): 96–101
CrossRef Google scholar
[278]
Monteil A, Chaussedent S, Alombert-Goget G, , . Clustering of rare earth in glasses, aluminum effect: experiments and modeling.Journal of Non-Crystalline Solids, 2004, 348: 44–50
CrossRef Google scholar
[279]
Langlet M, Coutier C, Meffre W, , . Microstructural and spectroscopic study of sol-gel derived Nd-doped silica glasses.Journal of Luminescence, 2002, 96(2‒4): 295–309
CrossRef Google scholar
[280]
Sckerl M W, Guldberg-Kjaer S, Rysholt Poulsen M, , . Precipitate coarsening and self organization in erbium-doped silica.Physical Review B: Condensed Matter, 1999, 59(21): 13494–13497
CrossRef Google scholar
[281]
Stepanov A L . Chapter 4: Laser annealing of metal nanoparticles synthesized in glasses by ion implantation.Glass Nanocomposites Synthesis, Properties and Applications, 2016, 115–130
[282]
De Marchi G, Mattei G, Mazzoldi P, , . Two stages in the kinetics of gold cluster growth in ion-implanted silica during isothermal annealing in oxidizing atmosphere.Journal of Applied Physics, 2002, 92(8): 4249–4254
CrossRef Google scholar
[283]
Srivastava S K, Gangopadhyay P, Amirthapandian S, , . Effects of high-energy Si ion-irradiations on optical responses of Ag metal nanoparticles in a SiO2 matrix.Chemical Physics Letters, 2014, 607: 100–104
CrossRef Google scholar
[284]
Liu Q, He X, Zhou X, , . Third-order nonlinearity in Ag-nanoparticles embedded 56GeS2–24Ga2S3–20KBr chalcohalide glasses.Journal of Non-Crystalline Solids, 2011, 357(11‒13): 2320–2323
CrossRef Google scholar
[285]
Vytykacova S, Svecova B, Nekvindova P, , . The formation of silver metal nanoparticles by ion implantation in silicate glasses.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 371: 245–250
CrossRef Google scholar
[286]
Zhang B, Sato R, Oyoshi K, , . Dispersion of third-order susceptibility of Au nanoparticles fabricated by ion implantation.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2019, 447: 38–42
CrossRef Google scholar
[287]
Herrera A, Balzaretti N M . Effect of gold nanoparticles in broadband near-infrared emission of Pr3+ doped B2O3‒PbO‒Bi2O3‒GeO2 glass.Journal of Luminescence, 2017, 181: 147–152
CrossRef Google scholar
[288]
Stepanov A L, Galyautdinov M F, Evlyukhin A B, , . Synthesis of periodic plasmonic microstructures with copper nanoparticles in silica glass by low-energy ion implantation.Applied Physics A: Materials Science & Processing, 2013, 111(1): 261–264
CrossRef Google scholar
[289]
Ghosh B, Chakraborty P, Singh B P, , . Enhanced nonlinear optical responses in metal–glass nanocomposites.Applied Surface Science, 2009, 256(2): 389–394
CrossRef Google scholar
[290]
Wang Y H, Wang Y M, Lu J D, , . Nonlinear optical properties of Cu nanoclusters by ion implantation in silicate glass.Optics Communications, 2010, 283(3): 486–489
CrossRef Google scholar
[291]
Xiao X H, Ren F, Wang J B, , . Formation of aligned silver nanoparticles by ion implantation.Materials Letters, 2007, 61(22): 4435–4437
CrossRef Google scholar
[292]
Shen Y, Qi T, Qiao Y, , . The effect of Ni pre-implantation on surface morphology and optical absorption properties of Ag nanoparticles embedded in SiO2.Applied Surface Science, 2016, 363: 310–317
CrossRef Google scholar
[293]
Wang J, Jia G, Zhang B, , . Formation and optical absorption property of nanometer metallic colloids in Zn and Ag dually implanted silica: synthesis of the modified Ag nanoparticles.Journal of Applied Physics, 2013, 113(3): 034304
CrossRef Google scholar
[294]
Nistor L C, van Landuyt J, Barton J B, , . Colloid size distribution in ion implanted glass.Journal of Non-Crystalline Solids, 1993, 162(3): 217–224
CrossRef Google scholar
[295]
Stepanov A L, Popok V N . Nanostructuring of silicate glass under low-energy Ag-ion implantation.Surface Science, 2004, 566‒568: 1250–1254
CrossRef Google scholar
[296]
Gnaser H, Brodyanski A, Reuscher B . Focused ion beam implantation of Ga in Si and Ge: fluence-dependent retention and surface morphology.Surface and Interface Analysis, 2008, 40(11): 1415–1422
CrossRef Google scholar
[297]
Stanek S, Nekvindova P, Svecova B, , . The influence of silver-ion doping using ion implantation on the luminescence properties of Er–Yb silicate glasses.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2016, 371: 350–354
CrossRef Google scholar
[298]
Fukumi K, Chayahara A, Kadono K, , . Gold nanoparticles ion implanted in glass with enhanced nonlinear optical properties.Journal of Applied Physics, 1994, 75(6): 3075–3080
CrossRef Google scholar
[299]
Yanes A C, del-Castillo J . Enhanced emission via energy transfer in RE co-doped SiO2–KYF4 nano-glass-ceramics for white LEDs.Journal of Alloys and Compounds, 2016, 658: 170–176
CrossRef Google scholar
[300]
Wang Y H, Liu F, Cheng H, , . Third order non-linear optical response of Cu nanoclusters by ion implantation in silicate glass under 532 and 1064 nm laser excitations.Materials Research Innovations, 2014, 18(4): 241–244
CrossRef Google scholar
[301]
Gonella F, Mattei G, Mazzoldi P, , . Au‒Cu alloy nanoclusters in silica formed by ion implantation and annealing in reducing or oxidizing atmosphere.Applied Physics Letters, 1999, 75(1): 55–57
CrossRef Google scholar
[302]
Cesca T, Calvelli P, Battaglin G, , . Local-field enhancement effect on the nonlinear optical response of gold‒silver nanoplanets.Optics Express, 2012, 20(4): 4537–4547
CrossRef Pubmed Google scholar
[303]
Mattei G, Marchi G D, Maurizio C, , . Chemical- or radiation-assisted selective dealloying in bimetallic nanoclusters.Physical Review Letters, 2003, 90(8): 085502
CrossRef Pubmed Google scholar
[304]
Liau Z L, Tsaur B Y, Mauer J W . Influence of atomic mixing and preferential sputtering on depth profiles and interfaces.Journal of Vacuum Science and Technology, 1979, 16(2): 121–127
CrossRef Google scholar
[305]
Yamada T, Takano A, Sugita K, , . Effect of dual implantation with Ag and Ni ions on the optical absorption of silica glass.Transactions of the Materials Research Society of Japan, 2020, 45(4): 127–130
CrossRef Google scholar
[306]
Cai G X, Ren F, Xiao X H, , . Morphology control and optical absorption properties of Ag nanoparticles by ion implantation.Journal of Materials Science and Technology, 2009, 25: 669–672
[307]
Bourgoin J C, Corbett J W . Enhanced diffusion mechanisms.Radiation Effects, 1978, 36(3‒4): 157–188
CrossRef Google scholar
[308]
Jia G, Xu R, Mu X, , . Zn ion post-implantation-driven synthesis of CuZn alloy nanoparticles in Cu-preimplanted silica and their thermal evolution.ACS Applied Materials & Interfaces, 2013, 5(24): 13055–13062
CrossRef Pubmed Google scholar
[309]
Wang J, Zhang L, Zhang X, , . Synthesis, thermal evolution and optical properties of CuZn alloy nanoparticles in SiO2 sequentially implanted with dual ions.Journal of Alloys and Compounds, 2013, 549: 231–237
CrossRef Google scholar
[310]
Voorhees P W . The theory of Ostwald ripening.Journal of Statistical Physics, 1985, 38(1‒2): 231–252
CrossRef Google scholar
[311]
Fan H J, Gösele U, Zacharias M . Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: a review.Small, 2007, 3(10): 1660–1671
CrossRef Pubmed Google scholar
[312]
Xu Y H, Wang J P . Direct gas-phase synthesis of heterostructured nanoparticles through phase separation and surface segregation.Advanced Materials, 2008, 20(5): 994–999
CrossRef Google scholar
[313]
Heggen M, Oezaslan M, Houben L, , . Formation and analysis of core‒shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts.The Journal of Physical Chemistry C, 2012, 116(36): 19073–19083
CrossRef Google scholar
[314]
Amekura H, Yoshitake M, Plaksin O A, , . Implantation-induced nonequilibrium reaction between Zn ions of 60 keV and SiO2 target.Applied Physics Letters, 2007, 91(6): 063113
CrossRef Google scholar
[315]
Wang J, Jia G Y, Zhang B, , . Quasi-two-dimensional Ag nanoparticle formation in silica by Xe ion irradiation and subsequent Ag ion implantation.Journal of Applied Physics, 2013, 113: 1–8
[316]
Peña O, Pal U, Rodríguez-Fernández L, , . Formation of Au‒Ag core‒shell nanostructures in silica matrix by sequential ion implantation.The Journal of Physical Chemistry C, 2009, 113(6): 2296–2300
CrossRef Google scholar
[317]
Torres-Torres C, López-Suárez A, Can-Uc B, , . Collective optical Kerr effect exhibited by an integrated configuration of silicon quantum dots and gold nanoparticles embedded in ion-implanted silica.Nanotechnology, 2015, 26(29): 295701
CrossRef Pubmed Google scholar
[318]
Yang X C, Li L L, Huang M, , . In situ synthesis of Ag‒Cu bimetallic nanoparticles in silicate glass by a two-step ion-exchange route.Journal of Non-Crystalline Solids, 2011, 357(11‒13): 2306–2308
CrossRef Google scholar
[319]
Obraztsov P A, Nashchekin A V, Nikonorov N V, , . Formation of silver nanoparticles on the silicate glass surface after ion exchange.Physics of the Solid State, 2013, 55(6): 1272–1278
CrossRef Google scholar
[320]
Garfinkel H M . Ion-exchange equilibria between glass and molten salts.The Journal of Physical Chemistry, 1968, 72(12): 4175–4181
CrossRef Google scholar
[321]
Ramaswamy R V, Srivastava R . Ion-exchanged glass waveguides: a review.Journal of Lightwave Technology, 1988, 6(6): 984–1000
CrossRef Google scholar
[322]
Crank J. The Mathematics of Diffusion. Oxford, UK: Clarendon, 1956
[323]
Kirkwood J G, Oppenheim J. Chemical Thermodynamics. New York, USA: McGraw Hill, 1961
[324]
Zhao J, Zhu J, Yang Z, , . Selective preparation of Ag species on photoluminescence of Sm3+ in borosilicate glass via Ag+‒Na+ ion exchange.Journal of the American Ceramic Society, 2020, 103(2): 955–964
CrossRef Google scholar
[325]
Zhao J, Yang Z, Yu C, , . Preparation of ultra-small molecule-like Ag nano-clusters in silicate glass based on ion-exchange process: energy transfer investigation from molecule-like Ag nano-clusters to Eu3+ ions.Chemical Engineering Journal, 2018, 341: 175–186
CrossRef Google scholar
[326]
Karvonen L, Rönn J, Kujala S, , . High non-resonant third-order optical nonlinearity of Ag‒glass nanocomposite fabricated by two-step ion exchange.Optical Materials, 2013, 36(2): 328–332
CrossRef Google scholar
[327]
Mathpal M C, Kumar P, Kumar S, , . Opacity and plasmonic properties of Ag embedded glass based metamaterials.RSC Advances, 2015, 5(17): 12555–12562
CrossRef Google scholar
[328]
Kumar P, Mathpal M C, Tripathi A K, , . Plasmonic resonance of Ag nanoclusters diffused in soda-lime glasses.Physical Chemistry Chemical Physics, 2015, 17(14): 8596–8603
CrossRef Pubmed Google scholar
[329]
Simo A, Polte J, Pfänder N, , . Formation mechanism of silver nanoparticles stabilized in glassy matrices.Journal of the American Chemical Society, 2012, 134(45): 18824–18833
CrossRef Pubmed Google scholar
[330]
Sheng J . Growth of silver nanoclusters embedded in soda-lime silicate glasses.International Journal of Hydrogen Energy, 2009, 34(5): 2471–2474
CrossRef Google scholar
[331]
Kumar P, Mathpal M C, Hamad S, , . Cu nanoclusters in ion exchanged soda-lime glass: study of SPR and nonlinear optical behavior for photonics.Applied Materials Today, 2019, 15: 323–334
CrossRef Google scholar
[332]
Marchi G, Caccavale F, Gonella F, , . Silver nanoclusters formation in ion-exchanged waveguides by annealing in hydrogen atmosphere.Applied Physics A: Materials Science & Processing, 1996, 63(4): 403–407
CrossRef Google scholar
[333]
Rahman A, Mariotto G, Cattaruzza E, , . Thermal annealing and laser-induced mechanisms in controlling the size and size-distribution of silver nanoparticles in Ag+‒Na+ ion-exchanged silicate glasses.Journal of Non-Crystalline Solids, 2021, 563: 120815
CrossRef Google scholar
[334]
Zhang J, Dong W, Sheng J, , . Silver nanoclusters formation in ion-exchanged glasses by thermal annealing, UV-laser and X-ray irradiation.Journal of Crystal Growth, 2008, 310(1): 234–239
CrossRef Google scholar
[335]
Sharma A . Energetic argon beam stimulated growth of plasmonic silver nanoparticles in Ag+-exchanged soda glass: a study on the structural, optical, photoluminescence and electrical behavior.Materials Science and Engineering B, 2021, 263: 1–10
[336]
Hofmeister H, Thiel S, Dubiel M, , . Synthesis of nanosized silver particles in ion-exchanged glass by electron beam irradiation.Applied Physics Letters, 1997, 70(13): 1694–1696
CrossRef Google scholar
[337]
Rahman A, Giarola M, Cattaruzza E, , . Raman microspectroscopy investigation of Ag ion-exchanged glass layers.Journal of Nanoscience and Nanotechnology, 2012, 12(11): 8573–8579
CrossRef Pubmed Google scholar
[338]
Quaranta A, Rahman A, Mariotto G, , . Spectroscopic investigation of structural rearrangements in silver ion-exchanged silicate glasses.The Journal of Physical Chemistry C, 2012, 116(5): 3757–3764
CrossRef Google scholar
[339]
Lenoir M, Grandjean A, Poissonnet S, , . Quantitation of sulfate solubility in borosilicate glasses using Raman spectroscopy.Journal of Non-Crystalline Solids, 2009, 355(28‒30): 1468–1473
CrossRef Google scholar
[340]
Mysen B O, Frantz J D . Silicate melts at magmatic temperatures: in-situ structure determination to 1651 °C and effect of temperature and bulk composition on the mixing behavior of structural units.Contributions to Mineralogy and Petrology, 1994, 117(1): 1–14
CrossRef Google scholar
[341]
Jansen M . Homoatomic d10–d10 interactions: their effects on structure and chemical and physical properties.Angewandte Chemie International Edition, 1987, 26(11): 1098–1110
CrossRef Google scholar
[342]
Gonella F, Quaranta A . Stress-induced birefringence in silver-diffused glass waveguides.Journal of Modern Optics, 1992, 39(7): 1401–1405
CrossRef Google scholar
[343]
Araujo R . Colorless glasses containing ion-exchanged silver.Applied Optics, 1992, 31(25): 5221–5224
CrossRef Pubmed Google scholar
[344]
Belharouak I, Weill F, Parent C, , . Silver particles in glasses of the ‘Ag2O–ZnO–P2O5’ system.Journal of Non-Crystalline Solids, 2001, 293-295: 649–656
CrossRef Google scholar
[345]
Bromann K, Félix C, Brune H, , . Controlled deposition of size-selected silver nanoclusters.Science, 1996, 274(5289): 956–958
CrossRef Pubmed Google scholar
[346]
Bastús N G, Comenge J, Puntes V . Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus Ostwald ripening.Langmuir, 2011, 27(17): 11098–11105
CrossRef Pubmed Google scholar
[347]
Takesue M, Tomura T, Yamada M, , . Size of elementary clusters and process period in silver nanoparticle formation.Journal of the American Chemical Society, 2011, 133(36): 14164–14167
CrossRef Pubmed Google scholar
[348]
Ye S, Guo Z, Wang H, , . Evolution of Ag species and molecular-like Ag cluster sensitized Eu3+ emission in oxyfluoride glass for tunable light emitting.Journal of Alloys and Compounds, 2016, 685: 891–895
CrossRef Google scholar
[349]
Chen Y, Karvonen L, Säynätjoki A, , . Ag nanoparticles embedded in glass by two-step ion exchange and their SERS application.Optical Materials Express, 2011, 1(2): 164–172
CrossRef Google scholar
[350]
Berneschi S, Righini G C, Pelli S . Towards a glass new world: the role of ion-exchange in modern technology.Applied Sciences, 2021, 11(10): 4610
CrossRef Google scholar
[351]
Debenedetti P G, Stillinger F H . Supercooled liquids and the glass transition.Nature, 2001, 410(6825): 259–267
CrossRef Pubmed Google scholar
[352]
Wackerow S, Seifert G, Abdolvand A . Homogenous silver-doped nanocomposite glass.Optical Materials Express, 2011, 1(7): 1224–1231
CrossRef Google scholar
[353]
Sgibnev Y, Asamoah B, Nikonorov N, , . Tunable photoluminescence of silver molecular clusters formed in Na+‒Ag+ ion-exchanged antimony-doped photo-thermo-refractive glass matrix.Journal of Luminescence, 2020, 226: 117411
CrossRef Google scholar
[354]
Lumeau J, Zanotto E D . A review of the photo-thermal mechanism and crystallization of photo-thermo-refractive (PTR) glass.International Materials Reviews, 2017, 62(6): 348–366
CrossRef Google scholar
[355]
Nikonorov N V, Panysheva E I, Tunimanova I V, , . Influence of glass composition on the refractive index change upon photothermoinduced crystallization.Glass Physics and Chemistry, 2001, 27(3): 241–249
CrossRef Google scholar
[356]
Jiao Q, Yu X, Xu X, , . Relationship between Eu3+ reduction and glass polymeric structure in Al2O3-modified borate glasses under air atmosphere.Journal of Solid State Chemistry, 2013, 202: 65–69
CrossRef Google scholar
[357]
Zhang Q, Liu X, Qiao Y, , . Reduction of Eu3+ to Eu2+ in Eu-doped high silica glass prepared in air atmosphere.Optical Materials, 2010, 32(3): 427–431
CrossRef Google scholar
[358]
Manikandan D, Mohan S, Magudapathy P, , . Blue shift of plasmon resonance in Cu and Ag ion-exchanged and annealed soda-lime glass: an optical absorption study.Physica B: Condensed Matter, 2003, 325: 86–91
CrossRef Google scholar
[359]
Chervinskii S, Sevriuk V, Reduto I, , . Formation and 2D-patterning of silver nanoisland film using thermal poling and out-diffusion from glass.Journal of Applied Physics, 2013, 114(22): 224301
CrossRef Google scholar
[360]
Tite T, Ollier N, Sow M C, , . Ag nanoparticles in soda-lime glass grown by continuous wave laser irradiation as an efficient SERS platform for pesticides detection.Sensors and Actuators B: Chemical, 2017, 242: 127–131
CrossRef Google scholar
[361]
Goutaland F, Sow M, Ollier N, , . Growth of highly concentrated silver nanoparticles and nanoholes in silver-exchanged glass by ultraviolet continuous wave laser exposure.Optical Materials Express, 2012, 2(4): 350–357
CrossRef Google scholar
[362]
Goutaland F, Colombier J P, Sow M C, , . Laser-induced periodic alignment of Ag nanoparticles in soda-lime glass.Optics Express, 2013, 21(26): 31789–31799
CrossRef Pubmed Google scholar
[363]
Niry M D, Mostafavi-Amjad J, Khalesifard H R, , . Formation of silver nanoparticles inside a soda-lime glass matrix in the presence of a high intensity Ar+ laser beam.Journal of Applied Physics, 2012, 111(3): 033111
CrossRef Google scholar
[364]
Babich E, Kaasik V, Redkov A, , . SERS-active pattern in silver-ion-exchanged glass drawn by infrared nanosecond laser.Nanomaterials, 2020, 10(9): 1849
CrossRef Pubmed Google scholar
[365]
Wackerow S, Abdolvand A . Laser-assisted one-step fabrication of homogeneous glass–silver composite.Applied Physics A: Materials Science & Processing, 2012, 109(1): 45–49
CrossRef Google scholar
[366]
Wackerow S, Abdolvand A . Generation of silver nanoparticles with controlled size and spatial distribution by pulsed laser irradiation of silver ion-doped glass.Optics Express, 2014, 22(5): 5076–5085
CrossRef Pubmed Google scholar
[367]
Zhang J, Dong W, Qiao L, , . Silver nanocluster formation in soda-lime silicate glass by X-ray irradiation and annealing.Journal of Crystal Growth, 2007, 305(1): 278–284
CrossRef Google scholar
[368]
Sonal , Sharma A, Aggarwal S . Optical investigation of soda lime glass with buried silver nanoparticles synthesised by ion implantation.Journal of Non-Crystalline Solids, 2018, 485: 57–65
CrossRef Google scholar
[369]
Gangopadhyay P, Magudapathy P, Kesavamoorthy R, , . Growth of silver nanoclusters embedded in soda glass matrix.Chemical Physics Letters, 2004, 388(4‒6): 416–421
CrossRef Google scholar
[370]
Gangopadhyay P, Magudapathy P, Srivastava S K, , . Effects of argon ion irradiation on nucleation and growth of silver nanoparticles in a soda-glass matrix.AIP Advances, 2011, 1(3): 032112
CrossRef Google scholar
[371]
Véron O, Blondeau J P, Meneses D D S, , . Characterization of silver or copper nanoparticles embedded in soda-lime glass after a staining process.Surface and Coatings Technology, 2013, 227: 48–57
CrossRef Google scholar
[372]
Zhang X, Luo W, Wang L J, , . Third-order nonlinear optical vitreous material derived from mesoporous silica incorporated with Au nanoparticles.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(34): 6966–6970
CrossRef Google scholar
[373]
Hirasawa M, Shirakawa H, Hamamura H, , . Growth mechanism of nanoparticles prepared by radio frequency sputtering.Journal of Applied Physics, 1997, 82(3): 1404–1407
CrossRef Google scholar
[374]
Cattaruzza E, Battaglin G, Canton P, , . Structural and physical properties of cobalt nanocluster composite glasses.Journal of Non-Crystalline Solids, 2004, 336(2): 148–152
CrossRef Google scholar
[375]
Chou Y J, Lin S H, Shih C J, , . The effect of Ag dopants on the bioactivity and antibacterial properties of one-step synthesized Ag-containing mesoporous bioactive glasses.Journal of Nanoscience and Nanotechnology, 2016, 16(9): 10001–10007
CrossRef Google scholar
[376]
Palgrave R G, Parkin I P . Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.Journal of the American Chemical Society, 2006, 128(5): 1587–1597
CrossRef Pubmed Google scholar
[377]
Delgado J, Vilarigues M, Ruivo A, , . Characterisation of medieval yellow silver stained glass from Convento de Cristo in Tomar, Portugal.Nuclear Instruments & Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2011, 269(20): 2383–2388
CrossRef Google scholar
[378]
Jiménez J A, Lysenko S, Zhang G, , . Optical characterization of Ag nanoparticles embedded in aluminophosphate glass.Journal of Electronic Materials, 2007, 36(7): 812–820
CrossRef Google scholar
[379]
Liu Y F, Liebenberg D H . Electromagnetic radio frequency heating in the pulsed electric current sintering (PECS) process.MRS Communications, 2017, 7(2): 266–271
CrossRef Google scholar
[380]
Cramer C L, McMurray J W, Lance M J, , . Reaction-bond composite synthesis of SiC‒TiB2 by spark plasma sintering/field-assisted sintering technology (SPS/FAST).Journal of the European Ceramic Society, 2020, 40(4): 988–995
CrossRef Google scholar
[381]
Weston N S, Thomas B, Jackson M . Processing metal powders via field assisted sintering technology (FAST): a critical review.Materials Science and Technology, 2019, 35(11): 1306–1328
CrossRef Google scholar
[382]
Gan H, Wang C B, Shen Q, , . Preparation of La2NiMnO6 double-perovskite ceramics by plasma activated sintering.Journal of Inorganic Materials, 2019, 34(5): 541–545
CrossRef Google scholar
[383]
Alaniz J E, Dupuy A D, Kodera Y, , . Effects of applied pressure on the densification rates in current-activated pressure-assisted densification (CAPAD) of nanocrystalline materials.Scripta Materialia, 2014, 92: 7–10
CrossRef Google scholar
[384]
Kodera Y, Hardin C L, Garay J E . Transmitting, emitting and controlling light: processing of transparent ceramics using current-activated pressure-assisted densification.Scripta Materialia, 2013, 69(2): 149–154
CrossRef Google scholar
[385]
Shen Z, Johnsson M, Zhao Z, , . Spark plasma sintering of alumina.Journal of the American Ceramic Society, 2002, 85(8): 1921–1927
CrossRef Google scholar
[386]
Deng S, Li R, Yuan T, , . Effect of electric current on crystal orientation and its contribution to densification during spark plasma sintering.Materials Letters, 2018, 229: 126–129
CrossRef Google scholar
[387]
Mamedov V . Spark plasma sintering as advanced PM sintering method.Powder Metallurgy, 2002, 45(4): 322–328
CrossRef Google scholar
[388]
Marder R, Estournès C, Chevallier G, , . Plasma in spark plasma sintering of ceramic particle compacts.Scripta Materialia, 2014, 82: 57–60
CrossRef Google scholar
[389]
Hulbert D M, Anders A, Andersson J, , . A discussion on the absence of plasma in spark plasma sintering.Scripta Materialia, 2009, 60(10): 835–838
CrossRef Google scholar
[390]
Tokita M . Development of large-size ceramic/metal bulk FGM fabricated by spark plasma sintering.Materials Science Forum, 1999, 308‒311: 83–88
CrossRef Google scholar
[391]
Hu Z Y, Zhang Z H, Cheng X W, , . A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications.Materials & Design, 2020, 191: 108862
CrossRef Google scholar
[392]
Zhao D, Feng J, Huo Q, , . Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores.Science, 1998, 279(5350): 548–552
CrossRef Pubmed Google scholar
[393]
Zhang X, Gu S, Zhou B, , . Solid-state sintering of glasses with optical nonlinearity from mesoporous powders.Journal of the American Ceramic Society, 2016, 99(5): 1579–1586
CrossRef Google scholar
[394]
Raven M S . Radio frequency sputtering and the deposition of high-temperature superconductors.Journal of Materials Science Materials in Electronics, 1994, 5(3): 129–146
CrossRef Google scholar
[395]
Horwitz C M . Radio frequency sputtering — the significance of power input.Journal of Vacuum Science & Technology A, 1983, 1(4): 1795–1800
CrossRef Google scholar
[396]
Mattei G, Battaglin G, Cattaruzza E, , . Synthesis by co-sputtering of Au–Cu alloy nanoclusters in silica.Journal of Non-Crystalline Solids, 2007, 353(5‒7): 697–702
CrossRef Google scholar
[397]
Cattaruzza E, Battaglin G, Gonella F, , . Au‒Cu nanoparticles in silica glass as composite material for photonic applications.Applied Surface Science, 2007, 254(4): 1017–1021
CrossRef Google scholar
[398]
Okuyama K . Preparation of micro-controlled particles using aerosol process.Journal of Aerosol Science, 1991, 22: S7–S10
CrossRef Google scholar
[399]
Messing G L, Zhang S C, Jayanthi G V . Ceramic powder synthesis by spray pyrolysis.Journal of the American Ceramic Society, 1993, 76(11): 2707–2726
CrossRef Google scholar
[400]
El-Kady A M, Ali A F, Rizk R A, , . Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles.Ceramics International, 2012, 38(1): 177–188
CrossRef Google scholar
[401]
Hong Y L, Liu Z, Wang L, , . Chemical vapor deposition of layered two-dimensional MoSi2N4 materials.Science, 2020, 369(6504): 670–674
CrossRef Pubmed Google scholar
[402]
Cai Z, Liu B, Zou X, , . Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructure.Chemical Reviews, 2018, 118(13): 6091–6133
CrossRef Pubmed Google scholar
[403]
Pu J, Tang L, Li C, , . Chemical vapor deposition growth of few-layer graphene for transparent conductive films.RSC Advances, 2015, 5(55): 44142–44148
CrossRef Google scholar
[404]
Lozovoy K A, Korotaev A G, Kokhanenko A P, , . Kinetics of epitaxial formation of nanostructures by Frank‒van der Merwe, Volmer‒Weber and Stranski‒Krastanow growth modes.Surface and Coatings Technology, 2020, 384: 125289
CrossRef Google scholar
[405]
Zinke-Allmang M . Phase separation on solid surfaces: nucleation, coarsening and coalescence kinetics.Thin Solid Films, 1999, 346(1‒2): 1–68
CrossRef Google scholar
[406]
Ertorer E, Avery J C, Pavelka L C, , . Surface-immobilized gold nanoparticles by organometallic CVD on amine-terminated glass surfaces.Chemical Vapor Deposition, 2013, 19(10‒12): 338–346
CrossRef Google scholar
[407]
Hamilton J A, Pugh T, Johnson A L, , . Cobalt(I) olefin complexes: precursors for metal-organic chemical vapor deposition of high purity cobalt metal thin films.Inorganic Chemistry, 2016, 55(14): 7141–7151
CrossRef Pubmed Google scholar
[408]
Palgrave R G, Parkin I P . Aerosol assisted chemical vapor deposition of gold and nanocomposite thin films from hydrogen tetrachloroaurate(III).Chemistry of Materials, 2007, 19(19): 4639–4647
CrossRef Google scholar
[409]
Ashraf S, Blackman C S, Hyett G, , . Aerosol assisted chemical vapour deposition of MoO3 and MoO2 thin films on glass from molybdenum polyoxometallate precursors; thermophoresis and gas phase nanoparticle formation.Journal of Materials Chemistry, 2006, 16(35): 3575–3582
CrossRef Google scholar
[410]
Talbot L, Cheng R K, Schefer R W, , . Thermophoresis of particles in a heated boundary layer.Journal of Fluid Mechanics, 1980, 101(4): 737–758
CrossRef Google scholar
[411]
Ponja S D, Williamson B A D, Sathasivam S, , . Enhanced electrical properties of antimony doped tin oxide thin films deposited via aerosol assisted chemical vapour deposition.Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(27): 7257–7266
CrossRef Google scholar
[412]
Gardecka A J, Goh G K L, Sankar G, , . On the nature of niobium substitution in niobium doped titania thin films by AACVD and its impact on electrical and optical properties.Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(34): 17755–17762
CrossRef Google scholar
[413]
Walters G, Parkin I P . Aerosol assisted chemical vapour deposition of ZnO films on glass with noble metal and p-type dopants; use of dopants to influence preferred orientation.Applied Surface Science, 2009, 255(13‒14): 6555–6560
CrossRef Google scholar
[414]
Ono M, Hata M, Tsunekawa M, , . Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides.Nature Photonics, 2020, 14(1): 37–43
CrossRef Google scholar
[415]
Yang Y, Kelley K, Sachet E, , . Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber.Nature Photonics, 2017, 11(6): 390–395
CrossRef Google scholar
[416]
Ren M, Jia B, Ou J Y, , . Nanostructured plasmonic medium for terahertz bandwidth all-optical switching.Advanced Materials, 2011, 23(46): 5540–5544
CrossRef Pubmed Google scholar
[417]
Pilot R, Signorini R, Durante C, , . A review on surface-enhanced Raman scattering.Biosensors, 2019, 9(2): 57
CrossRef Pubmed Google scholar
[418]
Kolobkova E, Kuznetsova M S, Nikonorov N . Ag/Na ion exchange in fluorophosphate glasses and formation of Ag nanoparticles in the bulk and on the surface of the glass.ACS Applied Nano Materials, 2019, 2(11): 6928–6938
CrossRef Google scholar
[419]
Takada K . Progress and prospective of solid-state lithium batteries.Acta Materialia, 2013, 61(3): 759–770
CrossRef Google scholar
[420]
Thangadurai V, Weppner W . Recent progress in solid oxide and lithium ion conducting electrolytes research.Ionics, 2006, 12(1): 81–92
CrossRef Google scholar
[421]
Kim J G, Son B, Mukherjee S, , . A review of lithium and non-lithium based solid state batteries.Journal of Power Sources, 2015, 282: 299–322
CrossRef Google scholar
[422]
Takada K, Aotani N, Iwamoto K, , . Solid state lithium battery with oxysulfide glass.Solid State Ionics, 1996, 86‒88: 877–882
CrossRef Google scholar
[423]
Liu L, Zhao F, Chen X, , . Local delivery of FTY720 in mesoporous bioactive glass improves bone regeneration by synergistically immunomodulating osteogenesis and osteoclastogenesis.Journal of Materials Chemistry B, 2020, 8(28): 6148–6158
CrossRef Pubmed Google scholar
[424]
Shoaib M, Saeed A, Rahman M S U, , . Mesoporous nano-bioglass designed for the release of imatinib and in vitro inhibitory effects on cancer cells.Materials Science and Engineering C, 2017, 77: 725–730
CrossRef Pubmed Google scholar
[425]
Tabia Z, El Mabrouk K, Bricha M, , . Mesoporous bioactive glass nanoparticles doped with magnesium: drug delivery and acellular in vitro bioactivity.RSC Advances, 2019, 9(22): 12232–12246
CrossRef Pubmed Google scholar
[426]
Shuai C, Xu Y, Feng P, , . Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver.Chemical Engineering Journal, 2019, 374: 304–315
CrossRef Google scholar
[427]
Fonseca J, Choi S . Rational synthesis of a hierarchical supramolecular porous material created via self-assembly of metal-organic framework nanosheets.Inorganic Chemistry, 2020, 59(6): 3983–3992
CrossRef Pubmed Google scholar

Acknowledgements

The Chemical Engineering Department at Northeastern University supported this work.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(10909 KB)

Accesses

Citations

Detail

Sections
Recommended

/