Strategies to assemble therapeutic and imaging molecules into inorganic nanocarriers

Sheikh Tanzina HAQUE , Mark M. BANASZAK HOLL , Ezharul Hoque CHOWDHURY

Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220604

PDF (3796KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (3) : 220604 DOI: 10.1007/s11706-022-0604-x
REVIEW ARTICLE
REVIEW ARTICLE

Strategies to assemble therapeutic and imaging molecules into inorganic nanocarriers

Author information +
History +
PDF (3796KB)

Abstract

Inorganic nanocarriers are potent candidates for delivering conventional anticancer drugs, nucleic acid-based therapeutics, and imaging agents, influencing their blood half-lives, tumor targetability, and bioactivity. In addition to the high surface area-to-volume ratio, they exhibit excellent scalability in synthesis, controllable shape and size, facile surface modification, inertness, stability, and unique optical and magnetic properties. However, only a limited number of inorganic nanocarriers have been so far approved for clinical applications due to burst drug release, poor target specificity, and toxicity. To overcome these barriers, understanding the principles involved in loading therapeutic and imaging molecules into these nanoparticles (NPs) and the strategies employed in enhancing sustainability and targetability of the resultant complexes and ensuring the release of the payloads in extracellular and intracellular compartments of the target site is of paramount importance. Therefore, we will shed light on various loading mechanisms harnessed for different inorganic NPs, particularly involving physical entrapment into porous/hollow nanostructures, ionic interactions with native and surface-modified NPs, covalent bonding to surface-functionalized nanomaterials, hydrophobic binding, affinity-based interactions, and intercalation through co-precipitation or anion exchange reaction.

Graphical abstract

Keywords

inorganic nanoparticle / cancer / ionic interaction / covalent bonding / affinity interaction / intercalation

Cite this article

Download citation ▾
Sheikh Tanzina HAQUE, Mark M. BANASZAK HOLL, Ezharul Hoque CHOWDHURY. Strategies to assemble therapeutic and imaging molecules into inorganic nanocarriers. Front. Mater. Sci., 2022, 16(3): 220604 DOI:10.1007/s11706-022-0604-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang G, Chen Y, Wang P, , . Preferential tumor accumulation and desirable interstitial penetration of poly(lactic-co-glycolic acid) nanoparticles with dual coating of chitosan oligosaccharide and polyethylene glycol-poly(D,L-lactic acid). Acta Biomaterialia, 2016, 29: 248– 260

[2]

Laha D, Pramanik A, Chattopadhyay S, , . Folic acid modified copper oxide nanoparticles for targeted delivery in in vitro and in vivo systems. RSC Advances, 2015, 5( 83): 68169– 68178

[3]

Williams J, Lansdown R, Sweitzer R, , . Nanoparticle drug delivery system for intravenous delivery of topoisomerase inhibitors. Journal of Controlled Release, 2003, 91( 1–2): 167– 172

[4]

Leroux J C, Allémann E, De Jaeghere F, , . Biodegradable nanoparticles — from sustained release formulations to improved site specific drug delivery. Journal of Controlled Release, 1996, 39( 2–3): 339– 350

[5]

Gupta S, Gupta M K . Possible role of nanocarriers in drug delivery against cervical cancer. Nano Reviews & Experiments, 2017, 8( 1): 1335567

[6]

Nguyen K T . Targeted nanoparticles for cancer therapy: promises and challenge. Journal of Nanomedicine & Nanotechnology, 2011, 2( 5): 103e

[7]

Ky K . Nanotechnology platforms and physiological challenges for cancer therapeutic. Nanomedicine, 2007, 3: 103– 110

[8]

Foroozandeh P, Aziz A A . Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Research Letters, 2018, 13( 1): 339

[9]

Haque S T, Islam R A, Gan S H, , . Characterization and evaluation of bone-derived nanoparticles as a novel pH-responsive carrier for delivery of doxorubicin into breast cancer cells. International Journal of Molecular Sciences, 2020, 21( 18): 6721

[10]

Moghimi S M, Hunter A C, Murray J C . Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews, 2001, 53( 2): 283– 318

[11]

Huang H C, Barua S, Sharma G, , . Inorganic nanoparticles for cancer imaging and therapy. Journal of Controlled Release, 2011, 155( 3): 344– 357

[12]

Haque S T, Chowdhury E H . Recent progress in delivery of therapeutic and imaging agents utilizing organic-inorganic hybrid nanoparticles. Current Drug Delivery, 2018, 15( 4): 485– 496

[13]

Haque S T, Karim M E, Othman I, , . Mitigating off-target distribution and enhancing cytotoxicity in breast cancer cells with alpha-ketoglutaric acid-modified Fe/Mg-CA nanoparticles. Journal of Pharmaceutical Investigation, 2022, 52( 3): 367– 386

[14]

Anselmo A C, Mitragotri S . Nanoparticles in the clinic: an update. Bioengineering & Translational Medicine, 2019, 4( 3): e10143

[15]

Mitchell M J, Billingsley M M, Haley R M, , . Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery, 2021, 20( 2): 101– 124

[16]

Chen Y, Xue Z, Zheng D, , . Sodium chloride modified silica nanoparticles as a non-viral vector with a high efficiency of DNA transfer into cells. Current Gene Therapy, 2003, 3( 3): 273– 279

[17]

Xu Z P, Zeng Q H, Lu G Q, , . Inorganic nanoparticles as carriers for efficient cellular delivery. Chemical Engineering Science, 2006, 61( 3): 1027– 1040

[18]

Garnett M C . Gene-delivery systems using cationic polymers. Critical Reviews™ in Therapeutic Drug Carrier Systems, 1999, 16( 2): 147– 207

[19]

Wang F, Li C, Cheng J, , . Recent advances on inorganic nanoparticle-based cancer therapeutic agents. International Journal of Environmental Research and Public Health, 2016, 13( 12): 1182

[20]

Jokerst J V, Lobovkina T, Zare R N, , . Nanoparticle PEGylation for imaging and therapy. Nanomedicine, 2011, 6( 4): 715– 728

[21]

Byrne J D, Betancourt T, Brannon-Peppas L . Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 2008, 60( 15): 1615– 1626

[22]

Yang G, Sun X, Liu J, , . Light-responsive, singlet-oxygen-triggered on-demand drug release from photosensitizer-doped mesoporous silica nanorods for cancer combination therapy. Advanced Functional Materials, 2016, 26( 26): 4722– 4732

[23]

Zhang Z, Wang J, Nie X, , . Near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. Journal of the American Chemical Society, 2014, 136( 20): 7317– 7326

[24]

Ye Y Q, Yang F L, Hu F Q, , . Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. International Journal of Pharmaceutics, 2008, 352( 1–2): 294– 301

[25]

Ye Y Q, Yang F L, Hu F Q, , . Core-modified chitosan-based polymeric micelles for controlled release of doxorubicin. International Journal of Pharmaceutics, 2008, 352( 1–2): 294– 301

[26]

Maier-Hauff K, Ulrich F, Nestler D, , . Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. Journal of Neuro-Oncology, 2011, 103( 2): 317– 324

[27]

Berry C C, Wells S, Charles S, , . Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials, 2003, 24( 25): 4551– 4557

[28]

Gupta A K, Curtis A S . Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials, 2004, 25( 15): 3029– 3040

[29]

Gupta A K, Gupta M . Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials, 2005, 26( 13): 1565– 1573

[30]

Masood F . Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering C, 2016, 60: 569– 578

[31]

Drummond D C, Meyer O, Hong K, , . Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological Reviews, 1999, 51( 4): 691– 743

[32]

Shmeeda H, Amitay Y, Tzemach D, , . Liposome encapsulation of zoledronic acid results in major changes in tissue distribution and increase in toxicity. Journal of Controlled Release, 2013, 167( 3): 265– 275

[33]

Hadjipanayis C G, Machaidze R, Kaluzova M, , . EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Research, 2010, 70( 15): 6303– 6312

[34]

El-Sayed I H, Huang X, El-Sayed M A . Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Letters, 2005, 5( 5): 829– 834

[35]

Khan M A, Singh D, Ahmad A, , . Revisiting inorganic nanoparticles as promising therapeutic agents: a paradigm shift in oncological theranostics. European Journal of Pharmaceutical Sciences, 2021, 164: 105892

[36]

Scicluna M C, Vella-Zarb L . Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework-drug systems. ACS Applied Nano Materials, 2020, 3( 4): 3097– 3115

[37]

Bharti C, Nagaich U, Pal A K, , . Mesoporous silica nanoparticles in target drug delivery system: a review. International Journal of Pharmaceutical Investigation, 2015, 5( 3): 124– 133

[38]

Song S W, Hidajat K, Kawi S . Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir, 2005, 21( 21): 9568– 9575

[39]

Varga N, Benkő M, Sebők D, , . Mesoporous silica core–shell composite functionalized with polyelectrolytes for drug delivery. Microporous and Mesoporous Materials, 2015, 213: 134– 141

[40]

Wang Y, Zhao Q, Han N, , . Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11( 2): 313– 327

[41]

Xiong L, Du X, Shi B, , . Tunable stellate mesoporous silica nanoparticles for intracellular drug delivery. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3( 8): 1712– 1721

[42]

Karimi M, Zangabad P S, Ghasemi A,, . Chapter 7: Nanotoxicology and future scope for smart nanoparticles. In: Karimi M, Zangabad P S, Ghasemi A,, ., eds. Smart External Stimulus-Responsive Nanocarriers for Drug and Gene Delivery. Morgan & Claypool Publishers, 2015

[43]

Asefa T, Tao Z . Biocompatibility of mesoporous silica nanoparticles. Chemical Research in Toxicology, 2012, 25( 11): 2265– 2284

[44]

Wang N, Cheng X, Li N, , . Nanocarriers and their loading strategies. Advanced Healthcare Materials, 2019, 8( 6): 1801002

[45]

Lu J, Liong M, Zink J I, , . Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 2007, 3( 8): 1341– 1346

[46]

Tang L, Cheng J . Nonporous silica nanoparticles for nanomedicine application. Nano Today, 2013, 8( 3): 290– 312

[47]

Corbalan J J, Medina C, Jacoby A, , . Amorphous silica nanoparticles aggregate human platelets: potential implications for vascular homeostasis. International Journal of Nanomedicine, 2012, 7: 631– 639

[48]

Chen F, Hong H, Zhang Y, , . In vivo tumor targeting and image-guided drug delivery with antibody-conjugated, radiolabeled mesoporous silica nanoparticles. ACS Nano, 2013, 7( 10): 9027– 9039

[49]

Karimi M, Eslami M, Sahandi-Zangabad P, , . pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, 8( 5): 696– 716

[50]

Karimi M, Sahandi-Zangabad P, Ghasemi A, , . Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Applied Materials & Interfaces, 2016, 8( 33): 21107– 21133

[51]

Rosenholm J M, Meinander A, Peuhu E, , . Targeting of porous hybrid silica nanoparticles to cancer cells. ACS Nano, 2009, 3( 1): 197– 206

[52]

Karaman D S, Desai D, Senthilkumar R, , . Shape engineering vs organic modification of inorganic nanoparticles as a tool for enhancing cellular internalization. Nanoscale Research Letters, 2012, 7( 1): 358

[53]

Xia T, Kovochich M, Liong M, , . Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano, 2009, 3( 10): 3273– 3286

[54]

Ngamcherdtrakul W, Morry J, Gu S, , . Cationic polymer modified mesoporous silica nanoparticles for targeted siRNA delivery to HER2+ breast cancer. Advanced Functional Materials, 2015, 25( 18): 2646– 2659

[55]

Wang Y, Cui Y, Huang J, , . Redox and pH dual-responsive mesoporous silica nanoparticles for site-specific drug delivery. Applied Surface Science, 2015, 356: 1282– 1288

[56]

Radu D R, Lai C Y, Jeftinija K, , . A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent. Journal of the American Chemical Society, 2004, 126( 41): 13216– 13217

[57]

Kar M, Tiwari N, Tiwari M, , . Poly-L-arginine grafted silica mesoporous nanoparticles for enhanced cellular uptake and their application in DNA delivery and controlled drug release. Particle & Particle Systems Characterization, 2013, 30( 2): 166– 179

[58]

Zou Z, He D, He X, , . Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery. Langmuir, 2013, 29( 41): 12804– 12810

[59]

Park I Y, Kim I Y, Yoo M K, , . Mannosylated polyethylenimine coupled mesoporous silica nanoparticles for receptor-mediated gene delivery. International Journal of Pharmaceutics, 2008, 359( 1–2): 280– 287

[60]

Meng H, Mai W X, Zhang H, , . Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano, 2013, 7( 2): 994– 1005

[61]

Jang M, Yoon Y I, Kwon Y S, , . Trastuzumab-conjugated liposome-coated fluorescent magnetic nanoparticles to target breast cancer. Korean Journal of Radiology, 2014, 15( 4): 411– 422

[62]

Sun Q, You Q, Wang J, , . Theranostic nanoplatform: triple-modal imaging-guided synergistic cancer therapy based on liposome-conjugated mesoporous silica nanoparticles. ACS Applied Materials & Interfaces, 2018, 10( 2): 1963– 1975

[63]

Wei W, Ma G H, Hu G, , . Preparation of hierarchical hollow CaCO3 particles and the application as anticancer drug carrier. Journal of the American Chemical Society, 2008, 130( 47): 15808– 15810

[64]

Ueno Y, Futagawa H, Takagi Y, , . Drug-incorporating calcium carbonate nanoparticles for a new delivery system. Journal of Controlled Release, 2005, 103( 1): 93– 98

[65]

Chen S, Zhao D, Li F, , . Co-delivery of genes and drugs with nanostructured calcium carbonate for cancer therapy. RSC Advances, 2012, 2( 5): 1820– 1826

[66]

Wang J, Chen J S, Zong J Y, , . Calcium carbonate/carboxymethyl chitosan hybrid microspheres and nanospheres for drug delivery. The Journal of Physical Chemistry C, 2010, 114( 44): 18940– 18945

[67]

Kester M, Heakal Y, Fox T, , . Calcium phosphate nanocomposite particles for in vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells. Nano Letters, 2008, 8( 12): 4116– 4121

[68]

Bae K H, Lee K, Kim C, , . Surface functionalized hollow manganese oxide nanoparticles for cancer targeted siRNA delivery and magnetic resonance imaging. Biomaterials, 2011, 32( 1): 176– 184

[69]

Shi J, Chen Z, Wang L, , . A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging. Acta Biomaterialia, 2016, 29: 282– 297

[70]

Chen S, Zhao X, Chen J, , . Mechanism-based tumor-targeting drug delivery system. Validation of efficient vitamin receptor-mediated endocytosis and drug release. Bioconjugate Chemistry, 2010, 21( 5): 979– 987

[71]

Pardridge W M, Boado R J . Enhanced cellular uptake of biotinylated antisense oligonucleotide or peptide mediated by avidin, a cationic protein. FEBS Letters, 1991, 288( 1–2): 30– 32

[72]

Zeng X, Sun Y X, Zhang X Z, , . Biotinylated disulfide containing PEI/avidin bioconjugate shows specific enhanced transfection efficiency in HepG2 cells. Organic & Biomolecular Chemistry, 2009, 7( 20): 4201– 4210

[73]

Wojda U, Goldsmith P, Miller J L . Surface membrane biotinylation efficiently mediates the endocytosis of avidin bioconjugates into nucleated cells. Bioconjugate Chemistry, 1999, 10( 6): 1044– 1050

[74]

Rosebrough S F . Pharmacokinetics and biodistribution of radiolabeled avidin, streptavidin and biotin. Nuclear Medicine and Biology, 1993, 20( 5): 663– 668

[75]

Schechter B, Silberman R, Arnon R, , . Tissue distribution of avidin and streptavidin injected to mice ― effect of avidin carbohydrate, streptavidin truncation and exogenous biotin. European Journal of Biochemistry, 1990, 189( 2): 327– 331

[76]

Yao Z, Zhang M, Sakahara H, , . Avidin targeting of intraperitoneal tumor xenografts. Journal of the National Cancer Institute, 1998, 90( 1): 25– 29

[77]

González M, Argaraña C E, Fidelio G D . Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomolecular Engineering, 1999, 16( 1–4): 67– 72

[78]

Elia G . Biotinylation reagents for the study of cell surface proteins. Proteomics, 2008, 8( 19): 4012– 4024

[79]

Jain A, Cheng K . The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of Controlled Release, 2017, 245: 27– 40

[80]

Hoya K, Guterman L R, Miskolczi L, , . A novel intravascular drug delivery method using endothelial biotinylation and avidin-biotin binding. Drug Delivery, 2001, 8( 4): 215– 222

[81]

Singh N P, Yolcu E S, Askenasy N, , . ProtEx: a novel technology to display exogenous proteins on the cell surface for immunomodulation. Annals of the New York Academy of Sciences, 2005, 1056( 1): 344– 358

[82]

Nguyen T T, Sly K L, Conboy J C . Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation. Analytical Chemistry, 2012, 84( 1): 201– 208

[83]

Artemov D, Mori N, Okollie B, , . MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magnetic Resonance in Medicine, 2003, 49( 3): 403– 408

[84]

Yan C, Wu Y, Feng J, , . Anti-αvβ3 antibody guided three-step pretargeting approach using magnetoliposomes for molecular magnetic resonance imaging of breast cancer angiogenesis. International Journal of Nanomedicine, 2013, 8: 245– 255

[85]

Barve A, Jain A, Liu H, , . An enzyme-responsive conjugate improves the delivery of a PI3K inhibitor to prostate cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12( 8): 2373– 2381

[86]

Steinbach J M, Seo Y E, Saltzman W M . Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization. Acta Biomaterialia, 2016, 30: 49– 61

[87]

van Rijt S H, Bölükbas D A, Argyo C, , . Protease-mediated release of chemotherapeutics from mesoporous silica nanoparticles to ex vivo human and mouse lung tumors. ACS Nano, 2015, 9( 3): 2377– 2389

[88]

Oliveri V, D’Agata R, Giglio V, , . Cyclodextrin-functionalised gold nanoparticles via streptavidin: a supramolecular approach. Supramolecular Chemistry, 2013, 25( 8): 465– 473

[89]

Barth B M, Sharma R, Altinoğlu E I, , . Bioconjugation of calcium phosphosilicate composite nanoparticles for selective targeting of human breast and pancreatic cancers in vivo. ACS Nano, 2010, 4( 3): 1279– 1287

[90]

Mozar F S, Chowdhury E H . Surface-modification of carbonate apatite nanoparticles enhances delivery and cytotoxicity of gemcitabine and anastrozole in breast cancer cells. Pharmaceutics, 2017, 9( 2): 21

[91]

Bajaj P, Mikoryak C, Wang R, , . A carbon nanotube-based Raman-imaging immunoassay for evaluating tumor targeting ligands. Analyst, 2014, 139( 12): 3069– 3076

[92]

Lai G, Wu J, Ju H, , . Streptavidin-functionalized silver-nanoparticle-enriched carbon nanotube tag for ultrasensitive multiplexed detection of tumor markers. Advanced Functional Materials, 2011, 21( 15): 2938– 2943

[93]

Cotí K K, Belowich M E, Liong M, , . Mechanised nanoparticles for drug delivery. Nanoscale, 2009, 1( 1): 16– 39

[94]

Ladewig K, Xu Z P, Lu G Q . Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opinion on Drug Delivery, 2009, 6( 9): 907– 922

[95]

Choi S J, Choy J H . Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine, 2011, 6( 5): 803– 814

[96]

Choi S J, Oh J M, Choy J H . Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. Journal of Nanoscience and Nanotechnology, 2010, 10( 4): 2913– 2916

[97]

Choy J H, Jung J S, Oh J M, , . Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials, 2004, 25( 15): 3059– 3064

[98]

Oh J M, Choi S J, Lee G E, , . Inorganic metal hydroxide nanoparticles for targeted cellular uptake through clathrin-mediated endocytosis. Chemistry: An Asian Journal, 2009, 4( 1): 67– 73

[99]

Nel A, Xia T, Mädler L, , . Toxic potential of materials at the nanolevel. Science, 2006, 311( 5761): 622– 627

[100]

Choi S J, Oh J M, Choy J H . Safety aspect of inorganic layered nanoparticles: size-dependency in vitro and in vivo. Journal of Nanoscience and Nanotechnology, 2008, 8( 10): 5297– 5301

[101]

Oh J M, Biswick T T, Choy J H . Layered nanomaterials for green materials. Journal of Materials Chemistry, 2009, 19( 17): 2553– 2563

[102]

Panyam J, Labhasetwar V . Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 2003, 55( 3): 329– 347

[103]

Oh J M, Choi S J, Kim S T, , . Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: enhanced efficacy due to clathrin-mediated endocytosis. Bioconjugate Chemistry, 2006, 17( 6): 1411– 1417

[104]

Oh J M, Park M, Kim S T, , . Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system. Journal of Physics and Chemistry of Solids, 2006, 67( 5–6): 1024– 1027

[105]

Choi S J, Oh J M, Chung H E, , . In vivo anticancer activity of methotrexate-loaded layered double hydroxide nanoparticles. Current Pharmaceutical Design, 2013, 19( 41): 7196– 7202

[106]

Javaid A, Bone M, Stanley C . Effect of fenbufen on the quality of life of patients with pain from squamous-cell carcinoma of the bronchus. In: Proceedings of the Thorax, 1988, 244

[107]

Li B, He J, Evans D G, , . Inorganic layered double hydroxides as a drug delivery system — intercalation and in vitro release of fenbufen. Applied Clay Science, 2004, 27( 3–4): 199– 207

[108]

Ambrogi V, Fardella G, Grandolini G, , . Intercalation compounds of hydrotalcite-like anionic clays with antiinflammatory agents ― I. Intercalation and in vitro release of ibuprofen. International Journal of Pharmaceutics, 2001, ( 1–2): 23– 32

[109]

Whilton N T, Vickers P J, Mann S . Bioinorganic clays: synthesis and characterization of amino-andpolyamino acid intercalated layered double hydroxides. Journal of Materials Chemistry, 1997, 7( 8): 1623– 1629

[110]

Xue Y H, Zhang R, Sun X Y, , . The construction and characterization of layered double hydroxides as delivery vehicles for podophyllotoxins. Journal of Materials Science: Materials in Medicine, 2008, 19( 3): 1197– 1202

[111]

Park D H, Cho J, Kwon O J, , . Biodegradable inorganic nanovector: passive versus active tumor targeting in siRNA transportation. Angewandte Chemie International Edition in English, 2016, 55( 14): 4582– 4586

[112]

Li L, Qian Y, Sun L, , . Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34: 102369

[113]

Choi G, Jeon I R, Piao H, , . Highly condensed boron cage cluster anions in 2d carrier and its enhanced antitumor efficiency for boron neutron capture therapy. Advanced Functional Materials, 2018, 28( 27): 1704470

[114]

Guo Z, Xie W, Lu J, , . Ferrous ions doped layered double hydroxide: smart 2D nanotheranostic platform with imaging-guided synergistic chemo/photothermal therapy for breast cancer. Biomaterials Science, 2021, 9( 17): 5928– 5938

[115]

Xu T, Liu J, Sun L, , . Enhancing tumor accumulation and cellular uptake of layered double hydroxide nanoparticles by coating/detaching pH-triggered charge-convertible polymers. ACS Omega, 2021, 6( 5): 3822– 3830

[116]

Baek M, Kim I S, Yu J, , . Effect of different forms of anionic nanoclays on cytotoxicity. Journal of Nanoscience and Nanotechnology, 2011, 11( 2): 1803– 1806

[117]

Xu Z P, Niebert M, Porazik K, , . Subcellular compartment targeting of layered double hydroxide nanoparticles. Journal of Controlled Release, 2008, 130( 1): 86– 94

[118]

Hong R, Han G, Fernández J M, , . Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. Journal of the American Chemical Society, 2006, 128( 4): 1078– 1079

[119]

Fadel T R, Fahmy T M . Immunotherapy applications of carbon nanotubes: from design to safe applications. Trends in Biotechnology, 2014, 32( 4): 198– 209

[120]

Villa C H, Dao T, Ahearn I, , . Single-walled carbon nanotubes deliver peptide antigen into dendritic cells and enhance IgG responses to tumor-associated antigens. ACS Nano, 2011, 5( 7): 5300– 5311

[121]

Dyke C A, Stewart M P, Tour J M . Separation of single-walled carbon nanotubes on silica gel. Materials morphology and Raman excitation wavelength affect data interpretation. Journal of the American Chemical Society, 2005, 127( 12): 4497– 4509

[122]

Lee K M, Li L, Dai L . Asymmetric end-functionalization of multi-walled carbon nanotubes. Journal of the American Chemical Society, 2005, 127( 12): 4122– 4123

[123]

Liu Z, Chen K, Davis C, , . Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Research, 2008, 68( 16): 6652– 6660

[124]

Sobhani Z, Behnam M A, Emami F, , . Photothermal therapy of melanoma tumor using multiwalled carbon nanotubes. International Journal of Nanomedicine, 2017, 12: 4509– 4517

[125]

Sacchetti C, Rapini N, Magrini A, , . In vivo targeting of intratumor regulatory T cells using PEG-modified single-walled carbon nanotubes. Bioconjugate Chemistry, 2013, 24( 6): 852– 858

[126]

Lee J S, Green J J, Love K T, , . Gold, poly(β-amino ester) nanoparticles for small interfering RNA delivery. Nano Letters, 2009, 9( 6): 2402– 2406

[127]

Li L, Nurunnabi M, Nafiujjaman M, , . A photosensitizer-conjugated magnetic iron oxide/gold hybrid nanoparticle as an activatable platform for photodynamic cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2( 19): 2929– 2937

[128]

Cheng Y, Doane T L, Chuang C H, , . Near infrared light-triggered drug generation and release from gold nanoparticle carriers for photodynamic therapy. Small, 2014, 10( 9): 1799– 1804

[129]

Massich M D, Giljohann D A, Schmucker A L, , . Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates. ACS Nano, 2010, 4( 10): 5641– 5646

[130]

Huschka R, Zuloaga J, Knight M W, , . Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. Journal of the American Chemical Society, 2011, 133( 31): 12247– 12255

[131]

Chen C C, Lin Y P, Wang C W, , . DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. Journal of the American Chemical Society, 2006, 128( 11): 3709– 3715

[132]

Dhar S, Gu F X, Langer R, , . Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105( 45): 17356– 17361

[133]

Dhar S, Liu Z, Thomale J, , . Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. Journal of the American Chemical Society, 2008, 130( 34): 11467– 11476

[134]

Dhar S, Daniel W L, Giljohann D A, , . Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. Journal of the American Chemical Society, 2009, 131( 41): 14652– 14653

[135]

Min Y, Mao C, Xu D, , . Gold nanorods for platinum based prodrug delivery. Chemical Communications, 2010, 46( 44): 8424– 8426

[136]

Ding W, Guo L . Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. International Journal of Nanomedicine, 2013, 8: 4631– 4639

[137]

Kresse M, Wagner S, Pfefferer D, , . Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magnetic Resonance in Medicine, 1998, 40( 2): 236– 242

[138]

Yu M K, Jeong Y Y, Park J, , . Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo. Angewandte Chemie International Edition in English, 2008, 47( 29): 5362– 5365

[139]

Som A, Raliya R, Tian L, , . Monodispersed calcium carbonate nanoparticles modulate local pH and inhibit tumor growth in vivo. Nanoscale, 2016, 8( 25): 12639– 12647

[140]

Kamba A S, Ismail M, Ibrahim T A T, , . A pH-sensitive, biobased calcium carbonate aragonite nanocrystal as a novel anticancer delivery system. BioMed Research International, 2013, 2013: 587451

[141]

Hammadi N I, Abba Y, Hezmee M N M, , . Formulation of a sustained release docetaxel loaded cockle shell-derived calcium carbonate nanoparticles against breast cancer. Pharmaceutical Research, 2017, 34( 6): 1193– 1203

[142]

Peng H, Li K, Wang T, , . Preparation of hierarchical mesoporous CaCO3 by a facile binary solvent approach as anticancer drug carrier for etoposide. Nanoscale Research Letters, 2013, 8( 1): 321

[143]

Li J, Yang Y, Huang L . Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. Journal of Controlled Release, 2012, 158( 1): 108– 114

[144]

Wu Z, Chen J, Sun Y, , . Tumor microenvironment-response calcium phosphate hybrid nanoparticles enhanced siRNAs targeting tumors in vivo. Journal of Biomedical Nanotechnology, 2018, 14( 10): 1816– 1825

[145]

Dong Y, Liao H, Fu H, , . pH-sensitive shell–core platform block DNA repair pathway to amplify irreversible DNA damage of triple negative breast cancer. ACS Applied Materials & Interfaces, 2019, 11( 42): 38417– 38428

[146]

Qiu C, Wei W, Sun J, , . Systemic delivery of siRNA by hyaluronan-functionalized calcium phosphate nanoparticles for tumor-targeted therapy. Nanoscale, 2016, 8( 26): 13033– 13044

[147]

Haque S T, Karim M E, Abidin S A Z, , . Fe/Mg-modified carbonate apatite with uniform particle size and unique transport protein-related protein corona efficiently delivers doxorubicin into breast cancer cells. Nanomaterials, 2020, 10( 5): 834

[148]

Hossain S M, Zainal Abidin S A, Chowdhury E H . Krebs cycle intermediate-modified carbonate apatite nanoparticles drastically reduce mouse tumor burden and toxicity by restricting broad tissue distribution of anticancer drugs. Cancers, 2020, 12( 1): 161

[149]

Mozar F S, Chowdhury E H . PEGylation of carbonate apatite nanoparticles prevents opsonin binding and enhances tumor accumulation of gemcitabine. Journal of Pharmaceutical Sciences, 2018, 107( 9): 2497– 2508

[150]

Hossain S M, Shetty J, Tha K K, , . α-Ketoglutaric acid-modified carbonate apatite enhances cellular uptake and cytotoxicity of a Raf-kinase inhibitor in breast cancer cells through inhibition of MAPK and PI-3 kinase pathways. Biomedicines, 2019, 7( 1): 4

[151]

Hossain S M, Chowdhury E H . Citrate- and succinate-modified carbonate apatite nanoparticles with loaded doxorubicin exhibit potent anticancer activity against breast cancer cells. Pharmaceutics, 2018, 10( 1): 32

[152]

Verma G, Barick K, Shetake N G, , . Citrate-functionalized hydroxyapatite nanoparticles for pH-responsive drug delivery. RSC Advances, 2016, 6( 81): 77968– 77976

[153]

Rodríguez-Ruiz I, Delgado-López J M, Durán-Olivencia M A, , . pH-responsive delivery of doxorubicin from citrate-apatite nanocrystals with tailored carbonate content. Langmuir, 2013, 29( 26): 8213– 8221

[154]

Bilensoy E . Cationic nanoparticles for cancer therapy. Expert Opinion on Drug Delivery, 2010, 7( 7): 795– 809

[155]

Slita A, Egorova A, Casals E, , . Characterization of modified mesoporous silica nanoparticles as vectors for siRNA delivery. Asian Journal of Pharmaceutical Sciences, 2018, 13( 6): 592– 599

[156]

Zakeri A, Kouhbanani M A J, Beheshtkhoo N, , . Polyethylenimine-based nanocarriers in co-delivery of drug and gene: a developing horizon. Nano Reviews & Experiments, 2018, 9( 1): 1488497

[157]

Vaidyanathan S, Chen J, Orr B G, , . Cationic polymer intercalation into the lipid membrane enables intact polyplex DNA escape from endosomes for gene delivery. Molecular Pharmaceutics, 2016, 13( 6): 1967– 1978

[158]

Benjaminsen R V, Mattebjerg M A, Henriksen J R, , . The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Molecular Therapy, 2013, 21( 1): 149– 157

[159]

Wang X, Niu D, Hu C, , . Polyethyleneimine-based nanocarriers for gene delivery. Current Pharmaceutical Design, 2015, 21( 42): 6140– 6156

[160]

Zhang T, Xue X, He D, , . A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA. Cancer Letters, 2015, 365( 2): 156– 165

[161]

Li X, Chen Y, Wang M, , . A mesoporous silica nanoparticle–PEI–fusogenic peptide system for siRNA delivery in cancer therapy. Biomaterials, 2013, 34( 4): 1391– 1401

[162]

Shen J, Kim H C, Su H, , . Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics, 2014, 4( 5): 487– 497

[163]

Tutuianu R, Popescu L M, Preda M B, , . Evaluation of the ability of nanostructured PEI-coated iron oxide nanoparticles to incorporate cisplatin during synthesis. Nanomaterials, 2017, 7( 10): 314

[164]

Liu G, Xie J, Zhang F, , . N-Alkyl-PEI-functionalized iron oxide nanoclusters for efficient siRNA delivery. Small, 2011, 7( 19): 2742– 2749

[165]

Zhang L, Wang T, Li L, , . Multifunctional fluorescent-magnetic polyethyleneimine functionalized Fe3O4–mesoporous silica yolk–shell nanocapsules for siRNA delivery. Chemical Communications, 2012, 48( 69): 8706– 8708

[166]

Siu K S, Chen D, Zheng X, , . Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials, 2014, 35( 10): 3435– 3442

[167]

Wu H, Shi H, Zhang H, , . Prostate stem cell antigen antibody-conjugated multiwalled carbon nanotubes for targeted ultrasound imaging and drug delivery. Biomaterials, 2014, 35( 20): 5369– 5380

[168]

Lee Y, Lee S H, Kim J S, , . Controlled synthesis of PEI-coated gold nanoparticles using reductive catechol chemistry for siRNA delivery. Journal of Controlled Release, 2011, 155( 1): 3– 10

[169]

Cebrián V, Martín-Saavedra F, Yagüe C, , . Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomaterialia, 2011, 7( 10): 3645– 3655

[170]

Zhang L, Lu Z, Zhao Q, , . Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small, 2011, 7( 4): 460– 464

[171]

Sheng J, Han L, Qin J, , . N-trimethyl chitosan chloride-coated PLGA nanoparticles overcoming multiple barriers to oral insulin absorption. ACS Applied Materials & Interfaces, 2015, 7( 28): 15430– 15441

[172]

Şenel S, McClure S J . Potential applications of chitosan in veterinary medicine. Advanced Drug Delivery Reviews, 2004, 56( 10): 1467– 1480

[173]

Kean T, Thanou M . Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews, 2010, 62( 1): 3– 11

[174]

Lin J, Li Y, Li Y, , . Drug/dye-loaded, multifunctional PEG–chitosan–iron oxide nanocomposites for methotraxate synergistically self-targeted cancer therapy and dual model imaging. ACS Applied Materials & Interfaces, 2015, 7( 22): 11908– 11920

[175]

Mao S, Sun W, Kissel T . Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews, 2010, 62( 1): 12– 27

[176]

Gurka M K, Pender D, Chuong P, , . Identification of pancreatic tumors in vivo with ligand-targeted, pH responsive mesoporous silica nanoparticles by multispectral optoacoustic tomography. Journal of Controlled Release, 2016, 231: 60– 67

[177]

Murugan C, Rayappan K, Thangam R, , . Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Scientific Reports, 2016, 6: 34053

[178]

Liao T, Liu C, Ren J, , . A chitosan/mesoporous silica nanoparticle-based anticancer drug delivery system with a “tumor-triggered targeting” property. International Journal of Biological Macromolecules, 2021, 183: 2017– 2029

[179]

Yan Q, Chen X, Gong H, , . Delivery of a TNF-α-derived peptide by nanoparticles enhances its antitumor activity by inducing cell-cycle arrest and caspase-dependent apoptosis. FASEB Journal, 2018, 32( 12): 6948– 6964

[180]

Jayasree A, Sasidharan S, Koyakutty M, , . Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging. Carbohydrate Polymers, 2011, 85( 1): 37– 43

[181]

Manivasagan P, Nguyen V T, Jun S W, , . Anti-EGFR antibody conjugated thiol chitosan-layered gold nanoshells for dual-modal imaging-guided cancer combination therapy. Journal of Controlled Release, 2019, 311–312: 26– 42

[182]

Li P, Yan Y, Zhang H, , . Treatment of cervical cancer by siRNA-loaded chitosan-coated calcium phosphate nanoparticles. Journal of Chinese Pharmaceutical Sciences, 2018, 27( 8): 517– 529

[183]

Roy K, Kanwar R K, Kanwar J R . LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials, 2015, 71: 84– 99

[184]

Lonez C, Vandenbranden M, Ruysschaert J M . Cationic liposomal lipids: from gene carriers to cell signaling. Progress in Lipid Research, 2008, 47( 5): 340– 347

[185]

Caplen N J . Nucleic acid transfer using cationic lipids. Methods in Molecular Biology, 2000, 133: 1– 19

[186]

Zhu N, Liggitt D, Liu Y, , . Systemic gene expression after intravenous DNA delivery into adult mice. Science, 1993, 261( 5118): 209– 211

[187]

Lindner L H, Brock R, Arndt-Jovin D, , . Structural variation of cationic lipids: minimum requirement for improved oligonucleotide delivery into cells. Journal of Controlled Release, 2006, 110( 2): 444– 456

[188]

Pillai G, Cox A, Yuen L . The science and technology of cancer theranostic nanomedicines: a primer for clinicians and pharmacists. SOJ Pharmacy and Pharmaceutical Sciences, 2018, 5( 2): 1– 7

[189]

Mudshinge S R, Deore A B, Patil S, , . Nanoparticles: emerging carriers for drug delivery. Saudi Pharmaceutical Journal, 2011, 19( 3): 129– 141

[190]

Al-Jamal W T, Al-Jamal K T, Tian B, , . Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano, 2008, 2( 3): 408– 418

[191]

Leung S J, Romanowski M . Light-activated content release from liposomes. Theranostics, 2012, 2( 10): 1020– 1036

[192]

Torchilin V P . Recent advances with liposomes as pharmaceutical carriers. Nature Reviews. Drug Discovery, 2005, 4( 2): 145– 160

[193]

Nie Y, Ji L, Ding H, , . Cholesterol derivatives based charged liposomes for doxorubicin delivery: preparation, in vitro and in vivo characterization. Theranostics, 2012, 2( 11): 1092– 1103

[194]

Sørensen D R, Leirdal M, Sioud M . Gene silencing by systemic delivery of synthetic siRNAs in adult mice. Journal of Molecular Biology, 2003, 327( 4): 761– 766

[195]

Zhang S, Zhao B, Jiang H, , . Cationic lipids and polymers mediated vectors for delivery of siRNA. Journal of Controlled Release, 2007, 123( 1): 1– 10

[196]

Tao W, Mao X, Davide J P, , . Mechanistically probing lipid-siRNA nanoparticle-associated toxicities identifies Jak inhibitors effective in mitigating multifaceted toxic responses. Molecular Therapy, 2011, 19( 3): 567– 575

[197]

Yang Y, Li J, Liu F, , . Systemic delivery of siRNA via LCP nanoparticle efficiently inhibits lung metastasis. Molecular Therapy, 2012, 20( 3): 609– 615

[198]

Reinhardt N, Adumeau L, Lambert O, , . Quaternary ammonium groups exposed at the surface of silica nanoparticles suitable for DNA complexation in the presence of cationic lipids. The Journal of Physical Chemistry B, 2015, 119( 21): 6401– 6411

[199]

Al-Jamal W T, Al-Jamal K T, Cakebread A, , . Blood circulation and tissue biodistribution of lipid-quantum dot (L-QD) hybrid vesicles intravenously administered in mice. Bioconjugate Chemistry, 2009, 20( 9): 1696– 1702

[200]

Al-Jamal W T, Al-Jamal K T, Tian B, , . Lipid-quantum dot bilayer vesicles enhance tumor cell uptake and retention in vitro and in vivo. ACS Nano, 2008, 2( 3): 408– 418

[201]

Al-Jamal W T, Al-Jamal K T, Bomans P H, , . Functionalized-quantum-dot-liposome hybrids as multimodal nanoparticles for cancer. Small, 2008, 4( 9): 1406– 1415

[202]

Wang F, Chen Z, Zhu L . cRGD-conjugated magnetic-fluorescent liposomes for targeted dual-modality imaging of bone metastasis from prostate cancer. Journal of Liposome Research, 2015, 25( 2): 89– 100

[203]

Mattingly S J, O’Toole M G, James K T, , . Magnetic nanoparticle-supported lipid bilayers for drug delivery. Langmuir, 2015, 31( 11): 3326– 3332

[204]

Kong W H, Bae K H, Jo S D, , . Cationic lipid-coated gold nanoparticles as efficient and non-cytotoxic intracellular siRNA delivery vehicles. Pharmaceutical Research, 2012, 29( 2): 362– 374

[205]

Chakraborty A, Boer J C, Selomulya C, , . Amino acid functionalized inorganic nanoparticles as cutting-edge therapeutic and diagnostic agents. Bioconjugate Chemistry, 2018, 29( 3): 657– 671

[206]

Biswas S, Medina S H, Barchi J J Jr . Synthesis and cell-selective antitumor properties of amino acid conjugated tumor-associated carbohydrate antigen-coated gold nanoparticles. Carbohydrate Research, 2015, 405: 93– 101

[207]

Shi J, Sun X, Zou X, , . Amino acid-dependent transformations of citrate-coated silver nanoparticles: impact on morphology, stability and toxicity. Toxicology Letters, 2014, 229( 1): 17– 24

[208]

Zhu X, Xie Y, Zhang Y, , . Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system. Journal of Biomaterials Applications, 2014, 29( 5): 769– 779

[209]

Feng Y, Su J, Zhao Z, , . Differential effects of amino acid surface decoration on the anticancer efficacy of selenium nanoparticles. Dalton Transactions, 2014, 43( 4): 1854– 1861

[210]

Yang H M, Lee H J, Park C W, , . Endosome-escapable magnetic poly(amino acid) nanoparticles for cancer diagnosis and therapy. Chemical Communications, 2011, 47( 18): 5322– 5324

[211]

Agemy L, Friedmann-Morvinski D, Kotamraju V R, , . Targeted nanoparticle enhanced proapoptotic peptide as potential therapy for glioblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108( 42): 17450– 17455

[212]

Shen Z, Liu T, Yang Z, , . Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials, 2020, 235: 119783

[213]

Taratula O, Garbuzenko O B, Chen A M, , . Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. Journal of Drug Targeting, 2011, 19( 10): 900– 914

[214]

Fei W, Zhang Y, Han S, , . RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. International Journal of Pharmaceutics, 2017, 519( 1–2): 250– 262

[215]

Luo G F, Chen W H, Liu Y, , . Multifunctional enveloped mesoporous silica nanoparticles for subcellular co-delivery of drug and therapeutic peptide. Scientific Reports, 2014, 4: 6064

[216]

Yang X Z, Du J Z, Dou S, , . Sheddable ternary nanoparticles for tumor acidity-targeted siRNA delivery. ACS Nano, 2012, 6( 1): 771– 781

[217]

Jin K T, Lu Z B, Chen J Y, , . Recent trends in nanocarrier-based targeted chemotherapy: selective delivery of anticancer drugs for effective lung, colon, cervical, and breast cancer treatment. Journal of Nanomaterials, 2020, 2020: 9184284

[218]

Liu Y, Pan Y, Cao W, , . A tumor microenvironment responsive biodegradable CaCO3/MnO2-based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics, 2019, 9( 23): 6867– 6884

[219]

Meng H, Xue M, Xia T, , . Use of size and a copolymer design feature to improve the biodistribution and the enhanced permeability and retention effect of doxorubicin-loaded mesoporous silica nanoparticles in a murine xenograft tumor model. ACS Nano, 2011, 5( 5): 4131– 4144

[220]

Lu J, Liong M, Li Z, , . Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small, 2010, 6( 16): 1794– 1805

[221]

Chen T, Zhao T, Wei D, , . Core–shell nanocarriers with ZnO quantum dots-conjugated Au nanoparticle for tumor-targeted drug delivery. Carbohydrate Polymers, 2013, 92( 2): 1124– 1132

[222]

Sharma H, Kumar K, Choudhary C, , . Development and characterization of metal oxide nanoparticles for the delivery of anticancer drug. Artificial Cells, Nanomedicine, and Biotechnology, 2016, 44( 2): 672– 679

[223]

Senapati S, Thakur R, Verma S P, , . Layered double hydroxides as effective carrier for anticancer drugs and tailoring of release rate through interlayer anions. Journal of Controlled Release, 2016, 224: 186– 198

[224]

Chakraborty J, Roychowdhury S, Sengupta S, , . Mg–Al layered double hydroxide-methotrexate nanohybrid drug delivery system: evaluation of efficacy. Materials Science and Engineering C, 2013, 33( 4): 2168– 2174

[225]

Kuo Y M, Kuthati Y, Kankala R K, , . Layered double hydroxide nanoparticles to enhance organ-specific targeting and the anti-proliferative effect of cisplatin. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2015, 3( 17): 3447– 3458

[226]

Asiabi H, Yamini Y, Alipour M, , . Synthesis and characterization of a novel biocompatible pseudo-hexagonal NaCa-layered double metal hydroxides for smart pH-responsive drug release of dacarbazine and enhanced anticancer activity in malignant melanoma. Materials Science and Engineering C, 2019, 97: 96– 102

[227]

Ray S, Joy M, Sa B, , . pH dependent chemical stability and release of methotrexate from a novel nanoceramic carrier. RSC Advances, 2015, 5( 49): 39482– 39494

[228]

Ray S, Mishra A, Mandal T K, , . Optimization of the process parameters for the fabrication of a polymer coated layered double hydroxide-methotrexate nanohybrid for the possible treatment of osteosarcoma. RSC Advances, 2015, 5( 124): 102574– 102592

[229]

Wen J, Lv Y, Xu Y, , . Construction of a biodegradable, versatile nanocarrier for optional combination cancer therapy. Acta Biomaterialia, 2019, 83: 359– 371

[230]

Pi J, Jiang J, Cai H, , . GE11 peptide conjugated selenium nanoparticles for EGFR targeted oridonin delivery to achieve enhanced anticancer efficacy by inhibiting EGFR-mediated PI3K/AKT and Ras/Raf/MEK/ERK pathways. Drug Delivery, 2017, 24( 1): 1549– 1564

[231]

Alibolandi M, Abnous K, Sadeghi F, , . Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: in vitro and in vivo evaluation. International Journal of Pharmaceutics, 2016, 500( 1–2): 162– 178

[232]

Xu C, Wang B, Sun S . Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. Journal of the American Chemical Society, 2009, 131( 12): 4216– 4217

[233]

Wang F, Wang Y C, Dou S, , . Doxorubicin-tethered responsive gold nanoparticles facilitate intracellular drug delivery for overcoming multidrug resistance in cancer cells. ACS Nano, 2011, 5( 5): 3679– 3692

[234]

Haynes B, Zhang Y, Liu F, , . Gold nanoparticle conjugated Rad6 inhibitor induces cell death in triple negative breast cancer cells by inducing mitochondrial dysfunction and PARP-1 hyperactivation: synthesis and characterization. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12( 3): 745– 757

[235]

Zhou Z, Kennell C, Lee J Y, , . Calcium phosphate-polymer hybrid nanoparticles for enhanced triple negative breast cancer treatment via co-delivery of paclitaxel and miR-221/222 inhibitors. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13( 2): 403– 410

[236]

Cheng Y, Samia A C, Meyers J D, , . Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. Journal of the American Chemical Society, 2008, 130( 32): 10643– 10647

[237]

Zelphati O, Uyechi L S, Barron L G, , . Effect of serum components on the physico-chemical properties of cationic lipid/oligonucleotide complexes and on their interactions with cells. Biochimica et Biophysica Acta, 1998, 1390( 2): 119– 133

[238]

Passirani C, Benoit J P. Complement activation by injectable colloidal drug carriers. In: Mahato R I, ed. Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids. Boca Raton, FL, USA: CRC Press, 2005

[239]

Brigger I, Dubernet C, Couvreur P . Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2002, 54( 5): 631– 651

RIGHTS & PERMISSIONS

The Author(s) 2022. This article is published with open access at link.springer.com and journal.hep.com.cn

AI Summary AI Mindmap
PDF (3796KB)

1872

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/