Strategies to assemble therapeutic and imaging molecules into inorganic nanocarriers
Sheikh Tanzina HAQUE, Mark M. BANASZAK HOLL, Ezharul Hoque CHOWDHURY
Strategies to assemble therapeutic and imaging molecules into inorganic nanocarriers
Inorganic nanocarriers are potent candidates for delivering conventional anticancer drugs, nucleic acid-based therapeutics, and imaging agents, influencing their blood half-lives, tumor targetability, and bioactivity. In addition to the high surface area-to-volume ratio, they exhibit excellent scalability in synthesis, controllable shape and size, facile surface modification, inertness, stability, and unique optical and magnetic properties. However, only a limited number of inorganic nanocarriers have been so far approved for clinical applications due to burst drug release, poor target specificity, and toxicity. To overcome these barriers, understanding the principles involved in loading therapeutic and imaging molecules into these nanoparticles (NPs) and the strategies employed in enhancing sustainability and targetability of the resultant complexes and ensuring the release of the payloads in extracellular and intracellular compartments of the target site is of paramount importance. Therefore, we will shed light on various loading mechanisms harnessed for different inorganic NPs, particularly involving physical entrapment into porous/hollow nanostructures, ionic interactions with native and surface-modified NPs, covalent bonding to surface-functionalized nanomaterials, hydrophobic binding, affinity-based interactions, and intercalation through co-precipitation or anion exchange reaction.
inorganic nanoparticle / cancer / ionic interaction / covalent bonding / affinity interaction / intercalation
[1] |
Wang G, Chen Y, Wang P, ,
CrossRef
Pubmed
Google scholar
|
[2] |
Laha D, Pramanik A, Chattopadhyay S, ,
CrossRef
Google scholar
|
[3] |
Williams J, Lansdown R, Sweitzer R, ,
CrossRef
Pubmed
Google scholar
|
[4] |
Leroux J C, Allémann E, De Jaeghere F, ,
CrossRef
Google scholar
|
[5] |
Gupta S, Gupta M K . Possible role of nanocarriers in drug delivery against cervical cancer. Nano Reviews & Experiments, 2017, 8( 1): 1335567
CrossRef
Pubmed
Google scholar
|
[6] |
Nguyen K T . Targeted nanoparticles for cancer therapy: promises and challenge. Journal of Nanomedicine & Nanotechnology, 2011, 2( 5): 103e
CrossRef
Google scholar
|
[7] |
Ky K . Nanotechnology platforms and physiological challenges for cancer therapeutic. Nanomedicine, 2007, 3: 103– 110
|
[8] |
Foroozandeh P, Aziz A A . Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Research Letters, 2018, 13( 1): 339
CrossRef
Pubmed
Google scholar
|
[9] |
Haque S T, Islam R A, Gan S H, ,
CrossRef
Pubmed
Google scholar
|
[10] |
Moghimi S M, Hunter A C, Murray J C . Long-circulating and target-specific nanoparticles: theory to practice. Pharmacological Reviews, 2001, 53( 2): 283– 318
Pubmed
|
[11] |
Huang H C, Barua S, Sharma G, ,
CrossRef
Pubmed
Google scholar
|
[12] |
Haque S T, Chowdhury E H . Recent progress in delivery of therapeutic and imaging agents utilizing organic-inorganic hybrid nanoparticles. Current Drug Delivery, 2018, 15( 4): 485– 496
CrossRef
Pubmed
Google scholar
|
[13] |
Haque S T, Karim M E, Othman I, ,
CrossRef
Google scholar
|
[14] |
Anselmo A C, Mitragotri S . Nanoparticles in the clinic: an update. Bioengineering & Translational Medicine, 2019, 4( 3): e10143
CrossRef
Pubmed
Google scholar
|
[15] |
Mitchell M J, Billingsley M M, Haley R M, ,
CrossRef
Pubmed
Google scholar
|
[16] |
Chen Y, Xue Z, Zheng D, ,
CrossRef
Pubmed
Google scholar
|
[17] |
Xu Z P, Zeng Q H, Lu G Q, ,
CrossRef
Google scholar
|
[18] |
Garnett M C . Gene-delivery systems using cationic polymers. Critical Reviews™ in Therapeutic Drug Carrier Systems, 1999, 16( 2): 147– 207
|
[19] |
Wang F, Li C, Cheng J, ,
CrossRef
Pubmed
Google scholar
|
[20] |
Jokerst J V, Lobovkina T, Zare R N, ,
CrossRef
Pubmed
Google scholar
|
[21] |
Byrne J D, Betancourt T, Brannon-Peppas L . Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews, 2008, 60( 15): 1615– 1626
CrossRef
Pubmed
Google scholar
|
[22] |
Yang G, Sun X, Liu J, ,
CrossRef
Google scholar
|
[23] |
Zhang Z, Wang J, Nie X, ,
CrossRef
Pubmed
Google scholar
|
[24] |
Ye Y Q, Yang F L, Hu F Q, ,
CrossRef
Pubmed
Google scholar
|
[25] |
Ye Y Q, Yang F L, Hu F Q, ,
CrossRef
Pubmed
Google scholar
|
[26] |
Maier-Hauff K, Ulrich F, Nestler D, ,
CrossRef
Pubmed
Google scholar
|
[27] |
Berry C C, Wells S, Charles S, ,
CrossRef
Pubmed
Google scholar
|
[28] |
Gupta A K, Curtis A S . Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Biomaterials, 2004, 25( 15): 3029– 3040
CrossRef
Pubmed
Google scholar
|
[29] |
Gupta A K, Gupta M . Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials, 2005, 26( 13): 1565– 1573
CrossRef
Pubmed
Google scholar
|
[30] |
Masood F . Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Materials Science and Engineering C, 2016, 60: 569– 578
CrossRef
Pubmed
Google scholar
|
[31] |
Drummond D C, Meyer O, Hong K, ,
Pubmed
|
[32] |
Shmeeda H, Amitay Y, Tzemach D, ,
CrossRef
Pubmed
Google scholar
|
[33] |
Hadjipanayis C G, Machaidze R, Kaluzova M, ,
CrossRef
Pubmed
Google scholar
|
[34] |
El-Sayed I H, Huang X, El-Sayed M A . Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Letters, 2005, 5( 5): 829– 834
CrossRef
Pubmed
Google scholar
|
[35] |
Khan M A, Singh D, Ahmad A, ,
CrossRef
Pubmed
Google scholar
|
[36] |
Scicluna M C, Vella-Zarb L . Evolution of nanocarrier drug-delivery systems and recent advancements in covalent organic framework-drug systems. ACS Applied Nano Materials, 2020, 3( 4): 3097– 3115
CrossRef
Google scholar
|
[37] |
Bharti C, Nagaich U, Pal A K, ,
CrossRef
Pubmed
Google scholar
|
[38] |
Song S W, Hidajat K, Kawi S . Functionalized SBA-15 materials as carriers for controlled drug delivery: influence of surface properties on matrix-drug interactions. Langmuir, 2005, 21( 21): 9568– 9575
CrossRef
Pubmed
Google scholar
|
[39] |
Varga N, Benkő M, Sebők D, ,
CrossRef
Google scholar
|
[40] |
Wang Y, Zhao Q, Han N, ,
CrossRef
Pubmed
Google scholar
|
[41] |
Xiong L, Du X, Shi B, ,
CrossRef
Pubmed
Google scholar
|
[42] |
Karimi M, Zangabad P S, Ghasemi A,,
|
[43] |
Asefa T, Tao Z . Biocompatibility of mesoporous silica nanoparticles. Chemical Research in Toxicology, 2012, 25( 11): 2265– 2284
CrossRef
Pubmed
Google scholar
|
[44] |
Wang N, Cheng X, Li N, ,
CrossRef
Pubmed
Google scholar
|
[45] |
Lu J, Liong M, Zink J I, ,
CrossRef
Pubmed
Google scholar
|
[46] |
Tang L, Cheng J . Nonporous silica nanoparticles for nanomedicine application. Nano Today, 2013, 8( 3): 290– 312
CrossRef
Pubmed
Google scholar
|
[47] |
Corbalan J J, Medina C, Jacoby A, ,
Pubmed
|
[48] |
Chen F, Hong H, Zhang Y, ,
CrossRef
Pubmed
Google scholar
|
[49] |
Karimi M, Eslami M, Sahandi-Zangabad P, ,
CrossRef
Pubmed
Google scholar
|
[50] |
Karimi M, Sahandi-Zangabad P, Ghasemi A, ,
CrossRef
Pubmed
Google scholar
|
[51] |
Rosenholm J M, Meinander A, Peuhu E, ,
CrossRef
Pubmed
Google scholar
|
[52] |
Karaman D S, Desai D, Senthilkumar R, ,
CrossRef
Pubmed
Google scholar
|
[53] |
Xia T, Kovochich M, Liong M, ,
CrossRef
Pubmed
Google scholar
|
[54] |
Ngamcherdtrakul W, Morry J, Gu S, ,
CrossRef
Pubmed
Google scholar
|
[55] |
Wang Y, Cui Y, Huang J, ,
CrossRef
Google scholar
|
[56] |
Radu D R, Lai C Y, Jeftinija K, ,
CrossRef
Pubmed
Google scholar
|
[57] |
Kar M, Tiwari N, Tiwari M, ,
CrossRef
Google scholar
|
[58] |
Zou Z, He D, He X, ,
CrossRef
Pubmed
Google scholar
|
[59] |
Park I Y, Kim I Y, Yoo M K, ,
CrossRef
Pubmed
Google scholar
|
[60] |
Meng H, Mai W X, Zhang H, ,
CrossRef
Pubmed
Google scholar
|
[61] |
Jang M, Yoon Y I, Kwon Y S, ,
CrossRef
Pubmed
Google scholar
|
[62] |
Sun Q, You Q, Wang J, ,
CrossRef
Pubmed
Google scholar
|
[63] |
Wei W, Ma G H, Hu G, ,
CrossRef
Pubmed
Google scholar
|
[64] |
Ueno Y, Futagawa H, Takagi Y, ,
CrossRef
Pubmed
Google scholar
|
[65] |
Chen S, Zhao D, Li F, ,
CrossRef
Google scholar
|
[66] |
Wang J, Chen J S, Zong J Y, ,
CrossRef
Google scholar
|
[67] |
Kester M, Heakal Y, Fox T, ,
CrossRef
Pubmed
Google scholar
|
[68] |
Bae K H, Lee K, Kim C, ,
CrossRef
Pubmed
Google scholar
|
[69] |
Shi J, Chen Z, Wang L, ,
CrossRef
Pubmed
Google scholar
|
[70] |
Chen S, Zhao X, Chen J, ,
CrossRef
Pubmed
Google scholar
|
[71] |
Pardridge W M, Boado R J . Enhanced cellular uptake of biotinylated antisense oligonucleotide or peptide mediated by avidin, a cationic protein. FEBS Letters, 1991, 288( 1–2): 30– 32
CrossRef
Pubmed
Google scholar
|
[72] |
Zeng X, Sun Y X, Zhang X Z, ,
CrossRef
Pubmed
Google scholar
|
[73] |
Wojda U, Goldsmith P, Miller J L . Surface membrane biotinylation efficiently mediates the endocytosis of avidin bioconjugates into nucleated cells. Bioconjugate Chemistry, 1999, 10( 6): 1044– 1050
CrossRef
Pubmed
Google scholar
|
[74] |
Rosebrough S F . Pharmacokinetics and biodistribution of radiolabeled avidin, streptavidin and biotin. Nuclear Medicine and Biology, 1993, 20( 5): 663– 668
CrossRef
Pubmed
Google scholar
|
[75] |
Schechter B, Silberman R, Arnon R, ,
CrossRef
Pubmed
Google scholar
|
[76] |
Yao Z, Zhang M, Sakahara H, ,
CrossRef
Pubmed
Google scholar
|
[77] |
González M, Argaraña C E, Fidelio G D . Extremely high thermal stability of streptavidin and avidin upon biotin binding. Biomolecular Engineering, 1999, 16( 1–4): 67– 72
CrossRef
Pubmed
Google scholar
|
[78] |
Elia G . Biotinylation reagents for the study of cell surface proteins. Proteomics, 2008, 8( 19): 4012– 4024
CrossRef
Pubmed
Google scholar
|
[79] |
Jain A, Cheng K . The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of Controlled Release, 2017, 245: 27– 40
CrossRef
Pubmed
Google scholar
|
[80] |
Hoya K, Guterman L R, Miskolczi L, ,
CrossRef
Pubmed
Google scholar
|
[81] |
Singh N P, Yolcu E S, Askenasy N, ,
CrossRef
Pubmed
Google scholar
|
[82] |
Nguyen T T, Sly K L, Conboy J C . Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation. Analytical Chemistry, 2012, 84( 1): 201– 208
CrossRef
Pubmed
Google scholar
|
[83] |
Artemov D, Mori N, Okollie B, ,
CrossRef
Pubmed
Google scholar
|
[84] |
Yan C, Wu Y, Feng J, ,
Pubmed
|
[85] |
Barve A, Jain A, Liu H, ,
CrossRef
Pubmed
Google scholar
|
[86] |
Steinbach J M, Seo Y E, Saltzman W M . Cell penetrating peptide-modified poly(lactic-co-glycolic acid) nanoparticles with enhanced cell internalization. Acta Biomaterialia, 2016, 30: 49– 61
CrossRef
Pubmed
Google scholar
|
[87] |
van Rijt S H, Bölükbas D A, Argyo C, ,
CrossRef
Pubmed
Google scholar
|
[88] |
Oliveri V, D’Agata R, Giglio V, ,
CrossRef
Google scholar
|
[89] |
Barth B M, Sharma R, Altinoğlu E I, ,
CrossRef
Pubmed
Google scholar
|
[90] |
Mozar F S, Chowdhury E H . Surface-modification of carbonate apatite nanoparticles enhances delivery and cytotoxicity of gemcitabine and anastrozole in breast cancer cells. Pharmaceutics, 2017, 9( 2): 21
CrossRef
Pubmed
Google scholar
|
[91] |
Bajaj P, Mikoryak C, Wang R, ,
CrossRef
Pubmed
Google scholar
|
[92] |
Lai G, Wu J, Ju H, ,
CrossRef
Google scholar
|
[93] |
Cotí K K, Belowich M E, Liong M, ,
CrossRef
Pubmed
Google scholar
|
[94] |
Ladewig K, Xu Z P, Lu G Q . Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opinion on Drug Delivery, 2009, 6( 9): 907– 922
CrossRef
Pubmed
Google scholar
|
[95] |
Choi S J, Choy J H . Layered double hydroxide nanoparticles as target-specific delivery carriers: uptake mechanism and toxicity. Nanomedicine, 2011, 6( 5): 803– 814
CrossRef
Pubmed
Google scholar
|
[96] |
Choi S J, Oh J M, Choy J H . Biocompatible nanoparticles intercalated with anticancer drug for target delivery: pharmacokinetic and biodistribution study. Journal of Nanoscience and Nanotechnology, 2010, 10( 4): 2913– 2916
CrossRef
Pubmed
Google scholar
|
[97] |
Choy J H, Jung J S, Oh J M, ,
CrossRef
Pubmed
Google scholar
|
[98] |
Oh J M, Choi S J, Lee G E, ,
CrossRef
Pubmed
Google scholar
|
[99] |
Nel A, Xia T, Mädler L, ,
CrossRef
Pubmed
Google scholar
|
[100] |
Choi S J, Oh J M, Choy J H . Safety aspect of inorganic layered nanoparticles: size-dependency in vitro and in vivo. Journal of Nanoscience and Nanotechnology, 2008, 8( 10): 5297– 5301
CrossRef
Pubmed
Google scholar
|
[101] |
Oh J M, Biswick T T, Choy J H . Layered nanomaterials for green materials. Journal of Materials Chemistry, 2009, 19( 17): 2553– 2563
CrossRef
Google scholar
|
[102] |
Panyam J, Labhasetwar V . Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews, 2003, 55( 3): 329– 347
CrossRef
Pubmed
Google scholar
|
[103] |
Oh J M, Choi S J, Kim S T, ,
CrossRef
Pubmed
Google scholar
|
[104] |
Oh J M, Park M, Kim S T, ,
CrossRef
Google scholar
|
[105] |
Choi S J, Oh J M, Chung H E, ,
CrossRef
Pubmed
Google scholar
|
[106] |
Javaid A, Bone M, Stanley C . Effect of fenbufen on the quality of life of patients with pain from squamous-cell carcinoma of the bronchus. In: Proceedings of the Thorax, 1988, 244
|
[107] |
Li B, He J, Evans D G, ,
CrossRef
Google scholar
|
[108] |
Ambrogi V, Fardella G, Grandolini G, ,
CrossRef
Pubmed
Google scholar
|
[109] |
Whilton N T, Vickers P J, Mann S . Bioinorganic clays: synthesis and characterization of amino-andpolyamino acid intercalated layered double hydroxides. Journal of Materials Chemistry, 1997, 7( 8): 1623– 1629
CrossRef
Google scholar
|
[110] |
Xue Y H, Zhang R, Sun X Y, ,
CrossRef
Pubmed
Google scholar
|
[111] |
Park D H, Cho J, Kwon O J, ,
CrossRef
Pubmed
Google scholar
|
[112] |
Li L, Qian Y, Sun L, ,
CrossRef
Pubmed
Google scholar
|
[113] |
Choi G, Jeon I R, Piao H, ,
CrossRef
Google scholar
|
[114] |
Guo Z, Xie W, Lu J, ,
CrossRef
Pubmed
Google scholar
|
[115] |
Xu T, Liu J, Sun L, ,
CrossRef
Pubmed
Google scholar
|
[116] |
Baek M, Kim I S, Yu J, ,
CrossRef
Pubmed
Google scholar
|
[117] |
Xu Z P, Niebert M, Porazik K, ,
CrossRef
Pubmed
Google scholar
|
[118] |
Hong R, Han G, Fernández J M, ,
CrossRef
Pubmed
Google scholar
|
[119] |
Fadel T R, Fahmy T M . Immunotherapy applications of carbon nanotubes: from design to safe applications. Trends in Biotechnology, 2014, 32( 4): 198– 209
CrossRef
Pubmed
Google scholar
|
[120] |
Villa C H, Dao T, Ahearn I, ,
CrossRef
Pubmed
Google scholar
|
[121] |
Dyke C A, Stewart M P, Tour J M . Separation of single-walled carbon nanotubes on silica gel. Materials morphology and Raman excitation wavelength affect data interpretation. Journal of the American Chemical Society, 2005, 127( 12): 4497– 4509
CrossRef
Pubmed
Google scholar
|
[122] |
Lee K M, Li L, Dai L . Asymmetric end-functionalization of multi-walled carbon nanotubes. Journal of the American Chemical Society, 2005, 127( 12): 4122– 4123
CrossRef
Pubmed
Google scholar
|
[123] |
Liu Z, Chen K, Davis C, ,
CrossRef
Pubmed
Google scholar
|
[124] |
Sobhani Z, Behnam M A, Emami F, ,
CrossRef
Pubmed
Google scholar
|
[125] |
Sacchetti C, Rapini N, Magrini A, ,
CrossRef
Pubmed
Google scholar
|
[126] |
Lee J S, Green J J, Love K T, ,
CrossRef
Pubmed
Google scholar
|
[127] |
Li L, Nurunnabi M, Nafiujjaman M, ,
CrossRef
Pubmed
Google scholar
|
[128] |
Cheng Y, Doane T L, Chuang C H, ,
CrossRef
Pubmed
Google scholar
|
[129] |
Massich M D, Giljohann D A, Schmucker A L, ,
CrossRef
Pubmed
Google scholar
|
[130] |
Huschka R, Zuloaga J, Knight M W, ,
CrossRef
Pubmed
Google scholar
|
[131] |
Chen C C, Lin Y P, Wang C W, ,
CrossRef
Pubmed
Google scholar
|
[132] |
Dhar S, Gu F X, Langer R, ,
CrossRef
Pubmed
Google scholar
|
[133] |
Dhar S, Liu Z, Thomale J, ,
CrossRef
Pubmed
Google scholar
|
[134] |
Dhar S, Daniel W L, Giljohann D A, ,
CrossRef
Pubmed
Google scholar
|
[135] |
Min Y, Mao C, Xu D, ,
CrossRef
Pubmed
Google scholar
|
[136] |
Ding W, Guo L . Immobilized transferrin Fe3O4@SiO2 nanoparticle with high doxorubicin loading for dual-targeted tumor drug delivery. International Journal of Nanomedicine, 2013, 8: 4631– 4639
Pubmed
|
[137] |
Kresse M, Wagner S, Pfefferer D, ,
CrossRef
Pubmed
Google scholar
|
[138] |
Yu M K, Jeong Y Y, Park J, ,
CrossRef
Pubmed
Google scholar
|
[139] |
Som A, Raliya R, Tian L, ,
CrossRef
Pubmed
Google scholar
|
[140] |
Kamba A S, Ismail M, Ibrahim T A T, ,
CrossRef
Google scholar
|
[141] |
Hammadi N I, Abba Y, Hezmee M N M, ,
CrossRef
Pubmed
Google scholar
|
[142] |
Peng H, Li K, Wang T, ,
CrossRef
Pubmed
Google scholar
|
[143] |
Li J, Yang Y, Huang L . Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. Journal of Controlled Release, 2012, 158( 1): 108– 114
CrossRef
Pubmed
Google scholar
|
[144] |
Wu Z, Chen J, Sun Y, ,
CrossRef
Pubmed
Google scholar
|
[145] |
Dong Y, Liao H, Fu H, ,
CrossRef
Pubmed
Google scholar
|
[146] |
Qiu C, Wei W, Sun J, ,
CrossRef
Pubmed
Google scholar
|
[147] |
Haque S T, Karim M E, Abidin S A Z, ,
CrossRef
Pubmed
Google scholar
|
[148] |
Hossain S M, Zainal Abidin S A, Chowdhury E H . Krebs cycle intermediate-modified carbonate apatite nanoparticles drastically reduce mouse tumor burden and toxicity by restricting broad tissue distribution of anticancer drugs. Cancers, 2020, 12( 1): 161
CrossRef
Pubmed
Google scholar
|
[149] |
Mozar F S, Chowdhury E H . PEGylation of carbonate apatite nanoparticles prevents opsonin binding and enhances tumor accumulation of gemcitabine. Journal of Pharmaceutical Sciences, 2018, 107( 9): 2497– 2508
CrossRef
Pubmed
Google scholar
|
[150] |
Hossain S M, Shetty J, Tha K K, ,
CrossRef
Pubmed
Google scholar
|
[151] |
Hossain S M, Chowdhury E H . Citrate- and succinate-modified carbonate apatite nanoparticles with loaded doxorubicin exhibit potent anticancer activity against breast cancer cells. Pharmaceutics, 2018, 10( 1): 32
CrossRef
Pubmed
Google scholar
|
[152] |
Verma G, Barick K, Shetake N G, ,
CrossRef
Google scholar
|
[153] |
Rodríguez-Ruiz I, Delgado-López J M, Durán-Olivencia M A, ,
CrossRef
Pubmed
Google scholar
|
[154] |
Bilensoy E . Cationic nanoparticles for cancer therapy. Expert Opinion on Drug Delivery, 2010, 7( 7): 795– 809
CrossRef
Pubmed
Google scholar
|
[155] |
Slita A, Egorova A, Casals E, ,
CrossRef
Google scholar
|
[156] |
Zakeri A, Kouhbanani M A J, Beheshtkhoo N, ,
CrossRef
Pubmed
Google scholar
|
[157] |
Vaidyanathan S, Chen J, Orr B G, ,
CrossRef
Pubmed
Google scholar
|
[158] |
Benjaminsen R V, Mattebjerg M A, Henriksen J R, ,
CrossRef
Pubmed
Google scholar
|
[159] |
Wang X, Niu D, Hu C, ,
CrossRef
Pubmed
Google scholar
|
[160] |
Zhang T, Xue X, He D, ,
CrossRef
Pubmed
Google scholar
|
[161] |
Li X, Chen Y, Wang M, ,
CrossRef
Pubmed
Google scholar
|
[162] |
Shen J, Kim H C, Su H, ,
CrossRef
Pubmed
Google scholar
|
[163] |
Tutuianu R, Popescu L M, Preda M B, ,
CrossRef
Pubmed
Google scholar
|
[164] |
Liu G, Xie J, Zhang F, ,
CrossRef
Pubmed
Google scholar
|
[165] |
Zhang L, Wang T, Li L, ,
CrossRef
Pubmed
Google scholar
|
[166] |
Siu K S, Chen D, Zheng X, ,
CrossRef
Pubmed
Google scholar
|
[167] |
Wu H, Shi H, Zhang H, ,
CrossRef
Pubmed
Google scholar
|
[168] |
Lee Y, Lee S H, Kim J S, ,
CrossRef
Pubmed
Google scholar
|
[169] |
Cebrián V, Martín-Saavedra F, Yagüe C, ,
CrossRef
Pubmed
Google scholar
|
[170] |
Zhang L, Lu Z, Zhao Q, ,
CrossRef
Pubmed
Google scholar
|
[171] |
Sheng J, Han L, Qin J, ,
CrossRef
Pubmed
Google scholar
|
[172] |
Şenel S, McClure S J . Potential applications of chitosan in veterinary medicine. Advanced Drug Delivery Reviews, 2004, 56( 10): 1467– 1480
CrossRef
Pubmed
Google scholar
|
[173] |
Kean T, Thanou M . Biodegradation, biodistribution and toxicity of chitosan. Advanced Drug Delivery Reviews, 2010, 62( 1): 3– 11
CrossRef
Pubmed
Google scholar
|
[174] |
Lin J, Li Y, Li Y, ,
CrossRef
Pubmed
Google scholar
|
[175] |
Mao S, Sun W, Kissel T . Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews, 2010, 62( 1): 12– 27
CrossRef
Pubmed
Google scholar
|
[176] |
Gurka M K, Pender D, Chuong P, ,
CrossRef
Pubmed
Google scholar
|
[177] |
Murugan C, Rayappan K, Thangam R, ,
CrossRef
Google scholar
|
[178] |
Liao T, Liu C, Ren J, ,
CrossRef
Pubmed
Google scholar
|
[179] |
Yan Q, Chen X, Gong H, ,
CrossRef
Pubmed
Google scholar
|
[180] |
Jayasree A, Sasidharan S, Koyakutty M, ,
CrossRef
Google scholar
|
[181] |
Manivasagan P, Nguyen V T, Jun S W, ,
CrossRef
Pubmed
Google scholar
|
[182] |
Li P, Yan Y, Zhang H, ,
CrossRef
Google scholar
|
[183] |
Roy K, Kanwar R K, Kanwar J R . LNA aptamer based multi-modal, Fe3O4-saturated lactoferrin (Fe3O4-bLf) nanocarriers for triple positive (EpCAM, CD133, CD44) colon tumor targeting and NIR, MRI and CT imaging. Biomaterials, 2015, 71: 84– 99
CrossRef
Pubmed
Google scholar
|
[184] |
Lonez C, Vandenbranden M, Ruysschaert J M . Cationic liposomal lipids: from gene carriers to cell signaling. Progress in Lipid Research, 2008, 47( 5): 340– 347
CrossRef
Pubmed
Google scholar
|
[185] |
Caplen N J . Nucleic acid transfer using cationic lipids. Methods in Molecular Biology, 2000, 133: 1– 19
CrossRef
Google scholar
|
[186] |
Zhu N, Liggitt D, Liu Y, ,
CrossRef
Pubmed
Google scholar
|
[187] |
Lindner L H, Brock R, Arndt-Jovin D, ,
CrossRef
Pubmed
Google scholar
|
[188] |
Pillai G, Cox A, Yuen L . The science and technology of cancer theranostic nanomedicines: a primer for clinicians and pharmacists. SOJ Pharmacy and Pharmaceutical Sciences, 2018, 5( 2): 1– 7
CrossRef
Google scholar
|
[189] |
Mudshinge S R, Deore A B, Patil S, ,
CrossRef
Pubmed
Google scholar
|
[190] |
Al-Jamal W T, Al-Jamal K T, Tian B, ,
CrossRef
Pubmed
Google scholar
|
[191] |
Leung S J, Romanowski M . Light-activated content release from liposomes. Theranostics, 2012, 2( 10): 1020– 1036
CrossRef
Pubmed
Google scholar
|
[192] |
Torchilin V P . Recent advances with liposomes as pharmaceutical carriers. Nature Reviews. Drug Discovery, 2005, 4( 2): 145– 160
CrossRef
Pubmed
Google scholar
|
[193] |
Nie Y, Ji L, Ding H, ,
CrossRef
Pubmed
Google scholar
|
[194] |
Sørensen D R, Leirdal M, Sioud M . Gene silencing by systemic delivery of synthetic siRNAs in adult mice. Journal of Molecular Biology, 2003, 327( 4): 761– 766
CrossRef
Pubmed
Google scholar
|
[195] |
Zhang S, Zhao B, Jiang H, ,
CrossRef
Pubmed
Google scholar
|
[196] |
Tao W, Mao X, Davide J P, ,
CrossRef
Pubmed
Google scholar
|
[197] |
Yang Y, Li J, Liu F, ,
CrossRef
Pubmed
Google scholar
|
[198] |
Reinhardt N, Adumeau L, Lambert O, ,
CrossRef
Pubmed
Google scholar
|
[199] |
Al-Jamal W T, Al-Jamal K T, Cakebread A, ,
CrossRef
Pubmed
Google scholar
|
[200] |
Al-Jamal W T, Al-Jamal K T, Tian B, ,
CrossRef
Pubmed
Google scholar
|
[201] |
Al-Jamal W T, Al-Jamal K T, Bomans P H, ,
CrossRef
Pubmed
Google scholar
|
[202] |
Wang F, Chen Z, Zhu L . cRGD-conjugated magnetic-fluorescent liposomes for targeted dual-modality imaging of bone metastasis from prostate cancer. Journal of Liposome Research, 2015, 25( 2): 89– 100
CrossRef
Pubmed
Google scholar
|
[203] |
Mattingly S J, O’Toole M G, James K T, ,
CrossRef
Pubmed
Google scholar
|
[204] |
Kong W H, Bae K H, Jo S D, ,
CrossRef
Pubmed
Google scholar
|
[205] |
Chakraborty A, Boer J C, Selomulya C, ,
CrossRef
Pubmed
Google scholar
|
[206] |
Biswas S, Medina S H, Barchi J J Jr . Synthesis and cell-selective antitumor properties of amino acid conjugated tumor-associated carbohydrate antigen-coated gold nanoparticles. Carbohydrate Research, 2015, 405: 93– 101
CrossRef
Pubmed
Google scholar
|
[207] |
Shi J, Sun X, Zou X, ,
CrossRef
Pubmed
Google scholar
|
[208] |
Zhu X, Xie Y, Zhang Y, ,
CrossRef
Pubmed
Google scholar
|
[209] |
Feng Y, Su J, Zhao Z, ,
CrossRef
Pubmed
Google scholar
|
[210] |
Yang H M, Lee H J, Park C W, ,
CrossRef
Pubmed
Google scholar
|
[211] |
Agemy L, Friedmann-Morvinski D, Kotamraju V R, ,
CrossRef
Pubmed
Google scholar
|
[212] |
Shen Z, Liu T, Yang Z, ,
CrossRef
Pubmed
Google scholar
|
[213] |
Taratula O, Garbuzenko O B, Chen A M, ,
CrossRef
Pubmed
Google scholar
|
[214] |
Fei W, Zhang Y, Han S, ,
CrossRef
Pubmed
Google scholar
|
[215] |
Luo G F, Chen W H, Liu Y, ,
CrossRef
Pubmed
Google scholar
|
[216] |
Yang X Z, Du J Z, Dou S, ,
CrossRef
Pubmed
Google scholar
|
[217] |
Jin K T, Lu Z B, Chen J Y, ,
CrossRef
Google scholar
|
[218] |
Liu Y, Pan Y, Cao W, ,
CrossRef
Pubmed
Google scholar
|
[219] |
Meng H, Xue M, Xia T, ,
CrossRef
Pubmed
Google scholar
|
[220] |
Lu J, Liong M, Li Z, ,
CrossRef
Pubmed
Google scholar
|
[221] |
Chen T, Zhao T, Wei D, ,
CrossRef
Pubmed
Google scholar
|
[222] |
Sharma H, Kumar K, Choudhary C, ,
CrossRef
Pubmed
Google scholar
|
[223] |
Senapati S, Thakur R, Verma S P, ,
CrossRef
Pubmed
Google scholar
|
[224] |
Chakraborty J, Roychowdhury S, Sengupta S, ,
CrossRef
Pubmed
Google scholar
|
[225] |
Kuo Y M, Kuthati Y, Kankala R K, ,
CrossRef
Pubmed
Google scholar
|
[226] |
Asiabi H, Yamini Y, Alipour M, ,
CrossRef
Pubmed
Google scholar
|
[227] |
Ray S, Joy M, Sa B, ,
CrossRef
Google scholar
|
[228] |
Ray S, Mishra A, Mandal T K, ,
CrossRef
Google scholar
|
[229] |
Wen J, Lv Y, Xu Y, ,
CrossRef
Pubmed
Google scholar
|
[230] |
Pi J, Jiang J, Cai H, ,
CrossRef
Pubmed
Google scholar
|
[231] |
Alibolandi M, Abnous K, Sadeghi F, ,
CrossRef
Pubmed
Google scholar
|
[232] |
Xu C, Wang B, Sun S . Dumbbell-like Au-Fe3O4 nanoparticles for target-specific platin delivery. Journal of the American Chemical Society, 2009, 131( 12): 4216– 4217
CrossRef
Pubmed
Google scholar
|
[233] |
Wang F, Wang Y C, Dou S, ,
CrossRef
Pubmed
Google scholar
|
[234] |
Haynes B, Zhang Y, Liu F, ,
CrossRef
Pubmed
Google scholar
|
[235] |
Zhou Z, Kennell C, Lee J Y, ,
CrossRef
Pubmed
Google scholar
|
[236] |
Cheng Y, Samia A C, Meyers J D, ,
CrossRef
Pubmed
Google scholar
|
[237] |
Zelphati O, Uyechi L S, Barron L G, ,
CrossRef
Pubmed
Google scholar
|
[238] |
Passirani C, Benoit J P. Complement activation by injectable colloidal drug carriers. In: Mahato R I, ed. Biomaterials for Delivery and Targeting of Proteins and Nucleic Acids. Boca Raton, FL, USA: CRC Press, 2005
|
[239] |
Brigger I, Dubernet C, Couvreur P . Nanoparticles in cancer therapy and diagnosis. Advanced Drug Delivery Reviews, 2002, 54( 5): 631– 651
CrossRef
Google scholar
|
/
〈 | 〉 |