Why is graphene an extraordinary material? A review based on a decade of research
Sachin Sharma Ashok KUMAR, Shahid BASHIR, Kasi RAMESH, Subramaniam RAMESH
Why is graphene an extraordinary material? A review based on a decade of research
During this decade, graphene which is a thin layer of carbon material along at ease with synthesis and functionalization has become a hot topic of research owing to excellent mechanical strength, very good current density, high thermal conductivity, superior electrical conductivity, large surface area, and good electron mobility. The research on graphene has exponentially accelerated specially when Geim and Novoselov developed and analyzed graphene. On this basis, for industrial application, researchers are exploring different techniques to produce high-quality graphene. Therefore, reviewed in this article is a brief introduction to graphene and its derivatives along with some of the methods developed to synthesize graphene and its prospective applications in both research and industry. In this work, recent advances on applications of graphene in various fields such as sensors, energy storage, energy harvesting, high-speed optoelectronics, supercapacitors, touch-based flexible screens, and organic light emitting diode displays have been summarized.
graphene / graphene oxide / electrochemical sensor / fuel cell / supercapacitor / dye-sensitized fuel cell / lithium battery / energy storage
[1] |
Aristov V Y, Urbanik G, Kummer K, ,
CrossRef
Pubmed
Google scholar
|
[2] |
Hernandez Y, Nicolosi V, Lotya M, ,
CrossRef
Pubmed
Google scholar
|
[3] |
Paredes J, Villar-Rodil S, Fernández-Merino M J, ,
CrossRef
Google scholar
|
[4] |
Dikin D A, Stankovich S, Zimney E J, ,
CrossRef
Pubmed
Google scholar
|
[5] |
Shahil K M, Balandin A A . Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Communications, 2012, 152( 15): 1331– 1340
CrossRef
Google scholar
|
[6] |
Avouris P, Xia F . Graphene applications in electronics and photonics. MRS Bulletin, 2012, 37( 12): 1225– 1234
CrossRef
Google scholar
|
[7] |
Novoselov K S, Fal’ko V I, Colombo L, ,
CrossRef
Pubmed
Google scholar
|
[8] |
Randviir E P, Brownson D A, Banks C E . A decade of graphene research: production, applications and outlook. Materials Today, 2014, 17( 9): 426– 432
CrossRef
Google scholar
|
[9] |
Zhao X, Hayner C M, Kung M C, ,
CrossRef
Google scholar
|
[10] |
Wang H, Sun K, Tao F, ,
CrossRef
Pubmed
Google scholar
|
[11] |
Prasai D, Tuberquia J C, Harl R R, ,
CrossRef
Pubmed
Google scholar
|
[12] |
Hyun W J, Park O O, Chin B D . Foldable graphene electronic circuits based on paper substrates. Advanced Materials, 2013, 25( 34): 4729– 4734
CrossRef
Pubmed
Google scholar
|
[13] |
Madurani K A, Suprapto S, Machrita N I, ,
CrossRef
Google scholar
|
[14] |
Ren W, Cheng H M . The global growth of graphene. Nature Nanotechnology, 2014, 9( 10): 726– 730
CrossRef
Pubmed
Google scholar
|
[15] |
Arshad A, Jabbal M, Yan Y, ,
CrossRef
Google scholar
|
[16] |
Choi J H, Lee C, Cho S, ,
CrossRef
Google scholar
|
[17] |
Brownson D A, Banks C E . Graphene electrochemistry: an overview of potential applications. Analyst, 2010, 135( 11): 2768– 2778
CrossRef
Pubmed
Google scholar
|
[18] |
Whitener K E Jr, Sheehan P E . Graphene synthesis. Diamond and Related Materials, 2014, 46 : 25– 34
CrossRef
Google scholar
|
[19] |
Nakano H, Tetsuka H, Spencer M J S, ,
CrossRef
Pubmed
Google scholar
|
[20] |
Bahadır E B, Sezgintürk M K . Applications of graphene in electrochemical sensing and biosensing. Trends in Analytical Chemistry, 2016, 76 : 1– 14
CrossRef
Google scholar
|
[21] |
Sarma S, Ray S C, Strydom A M . Electronic and magnetic properties of nitrogen functionalized graphene-oxide. Diamond and Related Materials, 2017, 79 : 1– 6
CrossRef
Google scholar
|
[22] |
Papageorgiou D G, Kinloch I A, Young R J . Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 2017, 90 : 75– 127
CrossRef
Google scholar
|
[23] |
Zhong Y, Zhen Z, Zhu H . Graphene: fundamental research and potential applications. FlatChem, 2017, 4 : 20– 32
CrossRef
Google scholar
|
[24] |
Schöche S, Hong N, Khorasaninejad M, ,
CrossRef
Google scholar
|
[25] |
Kumar R, Pérez del Pino A, Sahoo S, ,
CrossRef
Google scholar
|
[26] |
Bollella P, Fusco G, Tortolini C, ,
CrossRef
Pubmed
Google scholar
|
[27] |
Dericiler K, Alishah H M, Bozar S, ,
CrossRef
Google scholar
|
[28] |
Hosseinzadeh A, Bidmeshkipour S, Abdi Y, ,
CrossRef
Google scholar
|
[29] |
Salvo P, Melai B, Calisi N, ,
CrossRef
Google scholar
|
[30] |
Lawal A T . Progress in utilisation of graphene for electrochemical biosensors. Biosensors & Bioelectronics, 2018, 106 : 149– 178
CrossRef
Pubmed
Google scholar
|
[31] |
Zhang R, Chen W . Recent advances in graphene-based nanomaterials for fabricating electrochemical hydrogen peroxide sensors. Biosensors & Bioelectronics, 2017, 89( Pt 1): 249– 268
CrossRef
Pubmed
Google scholar
|
[32] |
Zhang Y, Sheng L, Fang Y, ,
CrossRef
Google scholar
|
[33] |
Zhang D, Ye K, Yao Y, ,
CrossRef
Google scholar
|
[34] |
Cheng G W, Chu K, Chen J S, ,
CrossRef
Google scholar
|
[35] |
Lee S, Lim S, Lim E, ,
CrossRef
Google scholar
|
[36] |
De Silva K, Huang H H, Joshi R K, ,
CrossRef
Google scholar
|
[37] |
Park S, Ruoff R S . Synthesis and characterization of chemically modified graphenes. Current Opinion in Colloid & Interface Science, 2015, 20( 5–6): 322– 328
CrossRef
Google scholar
|
[38] |
Abdullah A H, Ismail Z, Zainal Abidin A S, ,
CrossRef
Google scholar
|
[39] |
Muradov M B, Balayeva O O, Azizov A A, ,
CrossRef
Google scholar
|
[40] |
Takahashi F, Yamamoto N, Todoriki M, ,
CrossRef
Pubmed
Google scholar
|
[41] |
Hossain S T, Wang R . Electrochemical exfoliation of graphite: effect of temperature and hydrogen peroxide addition. Electrochimica Acta, 2016, 216 : 253– 260
CrossRef
Google scholar
|
[42] |
Molina J, Bonastre J, Fernández J, ,
CrossRef
Google scholar
|
[43] |
Vaghri E, Dorranian D, Ghoranneviss M . Effects of CTAB concentration on the quality of graphene oxide nanosheets produced by green laser ablation. Materials Chemistry and Physics, 2018, 203 : 235– 242
CrossRef
Google scholar
|
[44] |
Ghavidel E, Sari A H, Dorranian D . Experimental investigation of the effects of different liquid environments on the graphene oxide produced by laser ablation method. Optics & Laser Technology, 2018, 103 : 155– 162
CrossRef
Google scholar
|
[45] |
Jalili M, Ghanbari H, Moemen Bellah S, ,
CrossRef
Google scholar
|
[46] |
Kumar R, Sahoo S, Joanni E, ,
CrossRef
Google scholar
|
[47] |
Liao C, Li Y, Tjong S C . Graphene nanomaterials: synthesis, biocompatibility, and cytotoxicity. International Journal of Molecular Sciences, 2018, 19( 11): 3564
CrossRef
Pubmed
Google scholar
|
[48] |
Xu X, Zhang Z, Dong J, ,
CrossRef
Google scholar
|
[49] |
Wallace P R . The band theory of graphite. Physical Review, 1947, 71( 9): 622– 634
CrossRef
Google scholar
|
[50] |
Dreyer D R, Ruoff R S, Bielawski C W . From conception to realization: a historial account of graphene and some perspectives for its future. Angewandte Chemie International Edition in English, 2010, 49( 49): 9336– 9344
CrossRef
Pubmed
Google scholar
|
[51] |
Geim A . Graphene prehistory. Physica Scripta, 2012, 2012( T146): 014003
CrossRef
Google scholar
|
[52] |
Staudenmaier L . Verfahren zur darstellung der graphitsäure. Berichte der Deutschen Chemischen Gesellschaft, 1898, 31( 2): 1481– 1487
CrossRef
Google scholar
|
[53] |
Brodie B C . XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, 1859, 149 : 249– 259
CrossRef
Google scholar
|
[54] |
Boehm H P, Clauss A, Fischer G O, ,
CrossRef
Google scholar
|
[55] |
Van Bommel A, Crombeen J, Van Tooren A . LEED and Auger electron observations of the SiC (0 0 0 1) surface. Surface Science, 1975, 48( 2): 463– 472
CrossRef
Google scholar
|
[56] |
Kumar S S, Uddin M N, Rahman M M, ,
CrossRef
Google scholar
|
[57] |
Gómez-Navarro C, Weitz R T, Bittner A M, ,
CrossRef
Pubmed
Google scholar
|
[58] |
Wang X Y, Narita A, Müllen K . Precision synthesis versus bulk-scale fabrication of graphenes. Nature Reviews Chemistry, 2017, 2( 1): 1– 10
|
[59] |
Guerrero-Contreras J, Caballero-Briones F . Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method. Materials Chemistry and Physics, 2015, 153 : 209– 220
CrossRef
Google scholar
|
[60] |
Marcano D C, Kosynkin D V, Berlin J M, ,
CrossRef
Pubmed
Google scholar
|
[61] |
Feicht P, Eigler S . Defects in graphene oxide as structural motifs. ChemNanoMat: Chemistry of Nanomaterials for Energy, Biology and More, 2018, 4( 3): 244– 252
CrossRef
Google scholar
|
[62] |
Paulista Neto A J, Fileti E E . Elucidating the amphiphilic character of graphene oxide. Physical Chemistry Chemical Physics, 2018, 20( 14): 9507– 9515
CrossRef
Pubmed
Google scholar
|
[63] |
Paredes J I, Villar-Rodil S, Martínez-Alonso A, ,
CrossRef
Pubmed
Google scholar
|
[64] |
Park S, An J, Potts J R, ,
CrossRef
Google scholar
|
[65] |
Kumar S S A, Bashir S, Ramesh K, ,
CrossRef
Google scholar
|
[66] |
Zheng J, Wang L, Quhe R, ,
CrossRef
Pubmed
Google scholar
|
[67] |
Brownson D A, Kampouris D K, Banks C E . Graphene electrochemistry: fundamental concepts through to prominent applications. Chemical Society Reviews, 2012, 41( 21): 6944– 6976
CrossRef
Pubmed
Google scholar
|
[68] |
Nair R R, Blake P, Grigorenko A N, ,
CrossRef
Pubmed
Google scholar
|
[69] |
Soldano C, Mahmood A, Dujardin E . Production, properties and potential of graphene. Carbon, 2010, 48( 8): 2127– 2150
CrossRef
Google scholar
|
[70] |
Zhu Y, Murali S, Cai W, ,
CrossRef
Pubmed
Google scholar
|
[71] |
Ghawanmeh A A, Ali G A M, Algarni H, ,
CrossRef
Google scholar
|
[72] |
Kumar S S A, Bashir S, Ramesh K, ,
CrossRef
Google scholar
|
[73] |
Sharma S S A, Bashir S, Kasi R, ,
CrossRef
Google scholar
|
[74] |
Korkmaz S, Kariper I A . Graphene and graphene oxide based aerogels: synthesis, characteristics and supercapacitor applications. Journal of Energy Storage, 2020, 27 : 101038
CrossRef
Google scholar
|
[75] |
Tiwari S K, Sahoo S, Wang N, ,
CrossRef
Google scholar
|
[76] |
Kumar R, Sahoo S, Joanni E, ,
CrossRef
Google scholar
|
[77] |
Luo B, Liu S, Zhi L . Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. Small, 2012, 8( 5): 630– 646
CrossRef
Pubmed
Google scholar
|
[78] |
Xu C, Xu B, Gu Y, ,
CrossRef
Google scholar
|
[79] |
Lin Y, Li X, Xie D, ,
CrossRef
Google scholar
|
[80] |
Chakrabarti M, Low C T J, Brandon N P, ,
CrossRef
Google scholar
|
[81] |
Lawal A T . Synthesis and utilisation of graphene for fabrication of electrochemical sensors. Talanta, 2015, 131 : 424– 443
CrossRef
Pubmed
Google scholar
|
[82] |
Shan C, Yang H, Song J, ,
CrossRef
Pubmed
Google scholar
|
[83] |
Kang X, Wang J, Wu H, ,
CrossRef
Pubmed
Google scholar
|
[84] |
He Y, Sheng Q, Zheng J, ,
CrossRef
Google scholar
|
[85] |
Dey R S, Raj C R . Redox-functionalized graphene oxide architecture for the development of amperometric biosensing platform. ACS Applied Materials & Interfaces, 2013, 5( 11): 4791– 4798
CrossRef
Pubmed
Google scholar
|
[86] |
Li Z, Xie C, Wang J, ,
CrossRef
Google scholar
|
[87] |
Zhang M, Yuan R, Chai Y, ,
CrossRef
Pubmed
Google scholar
|
[88] |
Akhavan O, Ghaderi E, Esfandiar A . Wrapping bacteria by graphene nanosheets for isolation from environment, reactivation by sonication, and inactivation by near-infrared irradiation. The Journal of Physical Chemistry B, 2011, 115( 19): 6279– 6288
CrossRef
Pubmed
Google scholar
|
[89] |
Chen T Y, Loan P T, Hsu C L, ,
CrossRef
Pubmed
Google scholar
|
[90] |
Bo Y, Yang H, Hu Y, ,
CrossRef
Google scholar
|
[91] |
Hu Y, Li F, Bai X, ,
CrossRef
Pubmed
Google scholar
|
[92] |
Zhou M, Zhai Y, Dong S . Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Analytical Chemistry, 2009, 81( 14): 5603– 5613
CrossRef
Pubmed
Google scholar
|
[93] |
Gao F, Cai X, Wang X, ,
CrossRef
Google scholar
|
[94] |
Li S J, He J Z, Zhang M J, ,
CrossRef
Google scholar
|
[95] |
Yang L, Liu D, Huang J, ,
CrossRef
Google scholar
|
[96] |
Matsumoto K, Maehashi K, Ohno Y, ,
CrossRef
Google scholar
|
[97] |
Khatayevich D, Page T, Gresswell C, ,
CrossRef
Pubmed
Google scholar
|
[98] |
Palanisamy S, Chen S M, Sarawathi R. A novel nonenzymatic hydrogen peroxide sensor based on reduced graphene oxide/ZnO composite modified electrode. Sensors and Actuators B: Chemical, 2012, 166– 167: 166– 167
|
[99] |
Ye Y, Kong T, Yu X, ,
CrossRef
Pubmed
Google scholar
|
[100] |
Ju J, Chen W . In situ growth of surfactant-free gold nanoparticles on nitrogen-doped graphene quantum dots for electrochemical detection of hydrogen peroxide in biological environments. Analytical Chemistry, 2015, 87( 3): 1903– 1910
CrossRef
Pubmed
Google scholar
|
[101] |
Mercante L A, Facure M H M, Sanfelice R C, ,
CrossRef
Google scholar
|
[102] |
Luo J, Jiang S, Zhang H, ,
CrossRef
Pubmed
Google scholar
|
[103] |
Razmi H, Mohammad-Rezaei R . Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination. Biosensors & Bioelectronics, 2013, 41 : 498– 504
CrossRef
Pubmed
Google scholar
|
[104] |
Du D, Zou Z, Shin Y, ,
CrossRef
Pubmed
Google scholar
|
[105] |
Boland C S, Khan U, Backes C, ,
CrossRef
Pubmed
Google scholar
|
[106] |
Hempel M, Nezich D, Kong J, ,
CrossRef
Pubmed
Google scholar
|
[107] |
Nag A, Mitra A, Mukhopadhyay S C . Graphene and its sensor-based applications: a review. Sensors and Actuators A: Physical, 2018, 270 : 177– 194
CrossRef
Google scholar
|
[108] |
Xu Y, Guo Z, Chen H, ,
CrossRef
Google scholar
|
[109] |
Trung T Q, Lee N E . Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Advanced Materials, 2016, 28( 22): 4338– 4372
CrossRef
Pubmed
Google scholar
|
[110] |
Ryu S, Lee P, Chou J B, ,
CrossRef
Pubmed
Google scholar
|
[111] |
Viventi J, Kim D H, Moss J D, ,
CrossRef
Pubmed
Google scholar
|
[112] |
Chang N K, Su C C, Chang S H . Fabrication of single-walled carbon nanotube flexible strain sensors with high sensitivity. Applied Physics Letters, 2008, 92( 6): 063501
CrossRef
Google scholar
|
[113] |
Lipomi D J, Vosgueritchian M, Tee B C, ,
CrossRef
Pubmed
Google scholar
|
[114] |
Zhou J, Yu H, Xu X, ,
CrossRef
Pubmed
Google scholar
|
[115] |
Wang Y, Yang T, Lao J, ,
CrossRef
Google scholar
|
[116] |
Li X, Sun P, Fan L, ,
CrossRef
Pubmed
Google scholar
|
[117] |
Yan C, Wang J, Kang W, ,
CrossRef
Pubmed
Google scholar
|
[118] |
Bai Z, Zhou C, Xu H, ,
CrossRef
Google scholar
|
[119] |
Afsahi S, Lerner M B, Goldstein J M, ,
CrossRef
Pubmed
Google scholar
|
[120] |
Khalifa M, Wuzella G, Lammer H, ,
CrossRef
Google scholar
|
[121] |
Bae S H, Lee Y, Sharma B K, ,
CrossRef
Google scholar
|
[122] |
Tian H, Shu Y, Cui Y L, ,
CrossRef
Pubmed
Google scholar
|
[123] |
Li X, Zhang R, Yu W, ,
CrossRef
Pubmed
Google scholar
|
[124] |
Olabi A, Abdelkareem M A, Wilberforce T, ,
CrossRef
Google scholar
|
[125] |
Nassef A M, Fathy A, Sayed E T, ,
CrossRef
Google scholar
|
[126] |
Rezk H, Sayed E T, Al-Dhaifallah M, ,
CrossRef
Google scholar
|
[127] |
Abdelkareem M A, Tanveer W H, Sayed E T, ,
CrossRef
Google scholar
|
[128] |
Ijaodola O, El-Hassan Z, Ogungbemi E, ,
CrossRef
Google scholar
|
[129] |
Ogungbemi E, Ijaodola O, Khatib F N, ,
CrossRef
Google scholar
|
[130] |
Khatib F, Wilberforce T, Ijaodola O, ,
CrossRef
Google scholar
|
[131] |
Iwan A, Malinowski M, Pasciak G . Polymer fuel cell components modified by graphene: electrodes, electrolytes and bipolar plates. Renewable & Sustainable Energy Reviews, 2015, 49 : 954– 967
CrossRef
Google scholar
|
[132] |
Liang Y, Li Y, Wang H, ,
CrossRef
Pubmed
Google scholar
|
[133] |
Abdelkareem M A, Sayed E T, Alawadhi H, ,
CrossRef
Google scholar
|
[134] |
Ito Y, Takeuchi T, Tsujiguchi T, ,
CrossRef
Google scholar
|
[135] |
Feng C, Takeuchi T, Abdelkareem M A, ,
CrossRef
Google scholar
|
[136] |
Zhang J, Tang S, Liao L, ,
CrossRef
Google scholar
|
[137] |
Wang H, Liang Y, Li Y, ,
CrossRef
Google scholar
|
[138] |
Guo S, Sun S . FePt nanoparticles assembled on graphene as enhanced catalyst for oxygen reduction reaction. Journal of the American Chemical Society, 2012, 134( 5): 2492– 2495
CrossRef
Pubmed
Google scholar
|
[139] |
Liang Y, Wang H, Zhou J, ,
CrossRef
Pubmed
Google scholar
|
[140] |
Bai H, Li C, Shi G . Functional composite materials based on chemically converted graphene. Advanced Materials, 2011, 23( 9): 1089– 1115
CrossRef
Pubmed
Google scholar
|
[141] |
Tao Z, Chen W, Yang J, ,
CrossRef
Google scholar
|
[142] |
Shi Y, Zhu W, Shi H, ,
CrossRef
Pubmed
Google scholar
|
[143] |
Ji Y, Hou M, Zheng Y, ,
CrossRef
Google scholar
|
[144] |
Zhao J, Li H, Liu Z, ,
CrossRef
Google scholar
|
[145] |
Sun Y, Du C, An M, ,
CrossRef
Google scholar
|
[146] |
Damte J Y, Lyu S L, Leggesse E G, ,
CrossRef
Pubmed
Google scholar
|
[147] |
Li Y, Li Y, Zhu E, ,
CrossRef
Pubmed
Google scholar
|
[148] |
Pothaya S, Regalbuto J R, Monnier J R, ,
CrossRef
Google scholar
|
[149] |
Lim D H, Wilcox J . Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. The Journal of Physical Chemistry C, 2012, 116( 5): 3653– 3660
CrossRef
Google scholar
|
[150] |
Kong X K, Sun Z, Chen M, ,
CrossRef
Google scholar
|
[151] |
Yun Y S, Kim D, Tak Y, ,
CrossRef
Google scholar
|
[152] |
Li Y, Zhou W, Wang H, ,
CrossRef
Pubmed
Google scholar
|
[153] |
Elsaid K, Sayed E T, Abdelkareem M A, ,
CrossRef
Pubmed
Google scholar
|
[154] |
Elsaid K, Sayed E T, Abdelkareem M A, ,
CrossRef
Google scholar
|
[155] |
Damanabi A T, Servatan M, Mazinani S, ,
CrossRef
Pubmed
Google scholar
|
[156] |
Roslan N, Ya’acob M E, Radzi M A M, ,
CrossRef
Google scholar
|
[157] |
Park J H, Lee T W, Kang M G . Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells. Chemical Communications, 2008, ( 25): 2867– 2869
CrossRef
Pubmed
Google scholar
|
[158] |
Hore S, Vetter C, Kern R, ,
CrossRef
Google scholar
|
[159] |
Hagfeldt A, Grätzel M . Molecular photovoltaics. Accounts of Chemical Research, 2000, 33( 5): 269– 277
CrossRef
Pubmed
Google scholar
|
[160] |
Chou J C, Huang C H, Lin Y J, ,
CrossRef
Google scholar
|
[161] |
Chandiran A K, Abdi-Jalebi M, Nazeeruddin M K, ,
CrossRef
Pubmed
Google scholar
|
[162] |
Banik A, Ansari M S, Sahu T K, ,
CrossRef
Pubmed
Google scholar
|
[163] |
Bavir M, Fattah A . An investigation and simulation of the graphene performance in dye-sensitized solar cell. Optical and Quantum Electronics, 2016, 48( 12): 559
CrossRef
Google scholar
|
[164] |
Patil K, Rashidi S, Wang H, ,
CrossRef
Google scholar
|
[165] |
Imbrogno A, Pandiyan R, Macario A, ,
CrossRef
Google scholar
|
[166] |
Wang Y C, Cho C P . Application of TiO2-graphene nanocomposites to photoanode of dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 332 : 1– 9
CrossRef
Google scholar
|
[167] |
Kazzaz A E, Fatehi P . Interaction of synthetic and lignin-based sulfonated polymers with hydrophilic, hydrophobic, and charged self-assembled monolayers. RSC Advances, 2020, 10( 60): 36778– 36793
CrossRef
Google scholar
|
[168] |
Marchezi P E, Sonai G G, Hirata M K, ,
CrossRef
Google scholar
|
[169] |
Cui X, Xiao J, Wu Y, ,
CrossRef
Pubmed
Google scholar
|
[170] |
Murugadoss V, Lin J, Liu H, ,
CrossRef
Pubmed
Google scholar
|
[171] |
Wang X, Zhi L, Müllen K . Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Letters, 2008, 8( 1): 323– 327
CrossRef
Pubmed
Google scholar
|
[172] |
Chen T, Hu W, Song J, ,
CrossRef
Google scholar
|
[173] |
Ramanathan T, Abdala A A, Stankovich S, ,
CrossRef
Pubmed
Google scholar
|
[174] |
Wang H, Leonard S L, Hu Y H . Promoting effect of graphene on dye-sensitized solar cells. Industrial & Engineering Chemistry Research, 2012, 51( 32): 10613– 10620
CrossRef
Google scholar
|
[175] |
Tang Y B, Lee C S, Xu J, ,
CrossRef
Pubmed
Google scholar
|
[176] |
Liang J, Zhang G, Yang J, ,
CrossRef
Google scholar
|
[177] |
Kilic B, Turkdogan S . Fabrication of dye-sensitized solar cells using graphene sandwiched 3D-ZnO nanostructures based photoanode and Pt-free pyrite counter electrode. Materials Letters, 2017, 193 : 195– 198
CrossRef
Google scholar
|
[178] |
Sun S, Gao L, Liu Y . Enhanced dye-sensitized solar cell using graphene-TiO2 photoanode prepared by heterogeneous coagulation. Applied Physics Letters, 2010, 96( 8): 083113
CrossRef
Google scholar
|
[179] |
Yan X, Cui X, Li B, ,
CrossRef
Pubmed
Google scholar
|
[180] |
Wu J, Lan Z, Lin J, ,
CrossRef
Pubmed
Google scholar
|
[181] |
Mathew S, Yella A, Gao P, ,
CrossRef
Pubmed
Google scholar
|
[182] |
Liu X, Liang Y, Yue G, ,
CrossRef
Google scholar
|
[183] |
Bella F, Nair J R, Gerbaldi C . Towards green, efficient and durable quasi-solid dye-sensitized solar cells integrated with a cellulose-based gel-polymer electrolyte optimized by a chemometric DoE approach. RSC Advances, 2013, 3( 36): 15993– 16001
CrossRef
Google scholar
|
[184] |
Neo C Y, Ouyang J . The production of organogels using graphene oxide as the gelator for use in high-performance quasi-solid state dye-sensitized solar cells. Carbon, 2013, 54 : 48– 57
CrossRef
Google scholar
|
[185] |
Prabakaran K, Jandas P J, Mohanty S, ,
CrossRef
Google scholar
|
[186] |
Lee W J, Ramasamy E, Lee D Y, ,
CrossRef
Google scholar
|
[187] |
Bönnemann H, Khelashvili G, Behrens S, ,
CrossRef
Google scholar
|
[188] |
Roy-Mayhew J D, Bozym D J, Punckt C, ,
CrossRef
Pubmed
Google scholar
|
[189] |
Capasso A, Bellani S, Palma A L, ,
CrossRef
Google scholar
|
[190] |
Mahmoud M S, Motlak M, Barakat N A . Facile synthesis and characterization of two dimensional SnO2-decorated graphene oxide as an effective counter electrode in the DSSC. Catalysts, 2019, 9( 2): 139
CrossRef
Google scholar
|
[191] |
Kim S, Cho K H, Kim J Y, ,
CrossRef
Google scholar
|
[192] |
Li Z, Gadipelli S, Yang Y, ,
CrossRef
Google scholar
|
[193] |
Sahito I A, Sun K C, Arbab A A, ,
CrossRef
Google scholar
|
[194] |
Menachem C, Peled E, Burstein L, ,
CrossRef
Google scholar
|
[195] |
Gong J, Wu H, Yang Q . Structural and electrochemical properties of disordered carbon prepared by the pyrolysis of poly (p-phenylene) below 1000 °C for the anode of a lithium-ion battery. Carbon, 1999, 37( 9): 1409– 1416
CrossRef
Google scholar
|
[196] |
Park C W, Yoon S H, Lee S I, ,
CrossRef
Google scholar
|
[197] |
Wang S, Yang B, Chen H, ,
CrossRef
Google scholar
|
[198] |
Wu Y, Fang S, Jiang Y . Carbon anode materials based on melamine resin. Journal of Materials Chemistry, 1998, 8( 10): 2223– 2227
CrossRef
Google scholar
|
[199] |
Yoo E, Kim J, Hosono E, ,
CrossRef
Pubmed
Google scholar
|
[200] |
Derrien G, Hassoun J, Panero S, ,
CrossRef
Google scholar
|
[201] |
Li Y, Tan B, Wu Y . Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Letters, 2008, 8( 1): 265– 270
CrossRef
Pubmed
Google scholar
|
[202] |
Ren J G, Wu Q H, Hong G, ,
CrossRef
Google scholar
|
[203] |
Girishkumar G, McCloskey B, Luntz A C, ,
CrossRef
Google scholar
|
[204] |
Hu L H, Wu F Y, Lin C T, ,
|
[205] |
Ren X, Zhang S S, Tran D T, ,
CrossRef
Google scholar
|
[206] |
Xiao J, Mei D, Li X, ,
CrossRef
Pubmed
Google scholar
|
[207] |
Song J, Yu Z, Gordin M L, ,
CrossRef
Pubmed
Google scholar
|
[208] |
Ji L, Meduri P, Agubra V, ,
CrossRef
Google scholar
|
[209] |
Wasalathilake K C, Li H, Xu L, ,
CrossRef
Google scholar
|
[210] |
You Y, Manthiram A . Progress in high-voltage cathode materials for rechargeable sodium-ion batteries. Advanced Energy Materials, 2018, 8( 2): 1701785
CrossRef
Google scholar
|
[211] |
Kim S W, Seo D H, Ma X, ,
CrossRef
Google scholar
|
[212] |
Ellis B L, Nazar L F . Sodium and sodium-ion energy storage batteries. Current Opinion in Solid State and Materials Science, 2012, 16( 4): 168– 177
CrossRef
Google scholar
|
[213] |
Jache B, Adelhelm P . Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angewandte Chemie International Edition in English, 2014, 53( 38): 10169– 10173
CrossRef
Pubmed
Google scholar
|
[214] |
Kim H, Hong J, Park Y U, ,
CrossRef
Google scholar
|
[215] |
Wen Y, He K, Zhu Y, ,
CrossRef
Pubmed
Google scholar
|
[216] |
Ding J, Wang H, Li Z, ,
CrossRef
Pubmed
Google scholar
|
[217] |
Cabello M, Bai X, Chyrka T, ,
CrossRef
Google scholar
|
[218] |
Wang Y X, Chou S L, Liu H K, ,
CrossRef
Google scholar
|
[219] |
Zhang F, Alhajji E, Lei Y, ,
CrossRef
Google scholar
|
[220] |
Li X, Chen Y, Zhou L, ,
CrossRef
Google scholar
|
[221] |
Fang J, Wang S, Li Z, ,
CrossRef
Google scholar
|
[222] |
Wu C, Kopold P, Ding Y L, ,
CrossRef
Pubmed
Google scholar
|
[223] |
Hou H, Banks C E, Jing M, ,
CrossRef
Pubmed
Google scholar
|
[224] |
Rui X, Sun W, Wu C, ,
CrossRef
Pubmed
Google scholar
|
[225] |
Kang H, Liu Y, Cao K, ,
CrossRef
Google scholar
|
[226] |
Wang H G, Wu Z, Meng F L, ,
CrossRef
Pubmed
Google scholar
|
[227] |
Yan Y, Yin Y X, Xin S, ,
CrossRef
Google scholar
|
[228] |
Zhang H, Guo H, Li A, ,
CrossRef
Google scholar
|
[229] |
Balogun M S, Luo Y, Qiu W, ,
CrossRef
Google scholar
|
[230] |
Xu J, Wang M, Wickramaratne N P, ,
CrossRef
Pubmed
Google scholar
|
[231] |
Ling C, Mizuno F . Boron-doped graphene as a promising anode for Na-ion batteries. Physical Chemistry Chemical Physics, 2014, 16( 22): 10419– 10424
CrossRef
Pubmed
Google scholar
|
[232] |
Naresh V, Bhattacharjee U, Martha S K . Boron doped graphene nanosheets as negative electrode additive for high-performance lead-acid batteries and ultracapacitors. Journal of Alloys and Compounds, 2019, 797 : 595– 605
CrossRef
Google scholar
|
[233] |
Gao X T, Zhu X D, Gu L L, ,
CrossRef
Google scholar
|
[234] |
Zhan L, Zhou X, Luo J, ,
CrossRef
Google scholar
|
[235] |
Kim M, Lee J, Jeon Y, ,
CrossRef
Pubmed
Google scholar
|
[236] |
Zhao G, Yu D, Zhang H, ,
CrossRef
Google scholar
|
[237] |
Han P, Manthiram A . Boron- and nitrogen-doped reduced graphene oxide coated separators for high-performance Li‒S batteries. Journal of Power Sources, 2017, 369 : 87– 94
CrossRef
Google scholar
|
[238] |
Ma X, Ning G, Qi C, ,
CrossRef
Pubmed
Google scholar
|
[239] |
Hou T, Yue S, Sun X, ,
CrossRef
Google scholar
|
[240] |
Wang Z L, Xu D, Wang H G, ,
CrossRef
Pubmed
Google scholar
|
[241] |
Chen M, Zha R H, Yuan Z Y, ,
CrossRef
Google scholar
|
[242] |
Chen S, Xu Y, Li C, ,
CrossRef
Google scholar
|
[243] |
Dere A, Coskun B, Tataroğlu A, ,
CrossRef
Google scholar
|
[244] |
Liu Y, Wang Y, Zheng X, ,
CrossRef
Google scholar
|
[245] |
Xu X, Yang W, Chen B, ,
CrossRef
Google scholar
|
[246] |
Li W, Long G, Chen Q, ,
CrossRef
Google scholar
|
[247] |
Selvakumar D, Murugadoss G, Alsalme A, ,
CrossRef
Google scholar
|
[248] |
Yu C, Liu Z, Meng X, ,
CrossRef
Pubmed
Google scholar
|
[249] |
Ju M J, Kim J C, Choi H J, ,
CrossRef
Pubmed
Google scholar
|
[250] |
Zhu Y, Cui J, An S, ,
CrossRef
Google scholar
|
[251] |
Klingele M, Pham C, Vuyyuru K R, ,
CrossRef
Google scholar
|
[252] |
Zheng F Y, Li R, Ge S, ,
CrossRef
Google scholar
|
[253] |
Lv K, Zhang H, Chen S . Nitrogen and phosphorus co-doped carbon modified activated carbon as an efficient oxygen reduction catalyst for microbial fuel cells. RSC Advances, 2018, 8( 2): 848– 855
CrossRef
Google scholar
|
[254] |
Yang H B, Guo C, Zhang L, ,
CrossRef
Google scholar
|
[255] |
Kang G S, Lee S, Lee D C, ,
CrossRef
Google scholar
|
[256] |
Lee W, Yang H N, Park K W, ,
CrossRef
Google scholar
|
[257] |
Qu L, Liu Y, Baek J B, ,
CrossRef
Pubmed
Google scholar
|
[258] |
Park C, Lee E, Lee G, ,
CrossRef
Google scholar
|
[259] |
Gonzalez-Hernandez M, Antolini E, Perez J . CO tolerance and stability of PtRu and PtRuMo electrocatalysts supported on N-doped graphene nanoplatelets for polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45( 8): 5276– 5284
CrossRef
Google scholar
|
[260] |
Fan W, Xia Y Y, Tjiu W W, ,
CrossRef
Google scholar
|
[261] |
Karthika P, Rajalakshmi N, Dhathathreyan K S . Phosphorus-doped exfoliated graphene for supercapacitor electrodes. Journal of Nanoscience and Nanotechnology, 2013, 13( 3): 1746– 1751
CrossRef
Pubmed
Google scholar
|
[262] |
Wu Z S, Winter A, Chen L, ,
CrossRef
Pubmed
Google scholar
|
[263] |
Yang S, Song X, Zhang P, ,
CrossRef
Pubmed
Google scholar
|
[264] |
Wu X, Ding B, Zhang C, ,
CrossRef
Google scholar
|
[265] |
Yu X, Kang Y, Park H S . Sulfur and phosphorus co-doping of hierarchically porous graphene aerogels for enhancing supercapacitor performance. Carbon, 2016, 101 : 49– 56
CrossRef
Google scholar
|
[266] |
Liu F, Wang Z, Zhang H, ,
CrossRef
Google scholar
|
[267] |
Wang H, Zhang K, Song Y, ,
CrossRef
Google scholar
|
[268] |
Li X, Duan X, Han C, ,
CrossRef
Google scholar
|
[269] |
Shu X, Chen S, Chen S, ,
CrossRef
Google scholar
|
[270] |
Shinde S, Sami A, Lee J H . Sulfur mediated graphitic carbon nitride/S‒Se‒graphene as a metal-free hybrid photocatalyst for pollutant degradation and water splitting. Carbon, 2016, 96 : 929– 936
CrossRef
Google scholar
|
[271] |
Kumatani A, Miura C, Kuramochi H, ,
CrossRef
Pubmed
Google scholar
|
[272] |
Chang D W, Baek J B . Nitrogen-doped graphene for photocatalytic hydrogen generation. Chemistry: An Asian Journal, 2016, 11( 8): 1125– 1137
CrossRef
Pubmed
Google scholar
|
[273] |
Hu Q, Li G, Li G, ,
CrossRef
Google scholar
|
[274] |
Gao L . Flexible device applications of 2D semiconductors. Small, 2017, 13( 35): 1603994
CrossRef
Pubmed
Google scholar
|
[275] |
Lim Y R, Song W, Han J K, ,
CrossRef
Pubmed
Google scholar
|
[276] |
Tamalampudi S R, Lu Y Y, Kumar U R, ,
CrossRef
Pubmed
Google scholar
|
[277] |
Wang Q, Xu K, Wang Z, ,
CrossRef
Pubmed
Google scholar
|
[278] |
Xue Y, Zhang Y, Liu Y, ,
CrossRef
Pubmed
Google scholar
|
[279] |
Zheng Z, Zhang T, Yao J, ,
CrossRef
Pubmed
Google scholar
|
[280] |
Wu C, Lu X, Peng L, ,
CrossRef
Pubmed
Google scholar
|
[281] |
Bao J, Zhang X, Bai L, ,
CrossRef
Google scholar
|
[282] |
Chen L, Zhou G, Liu Z, ,
CrossRef
Pubmed
Google scholar
|
[283] |
Zhang C, Yin H, Han M, ,
CrossRef
Pubmed
Google scholar
|
[284] |
Pickering J . Touch-sensitive screens: the technologies and their application. International Journal of Man-Machine Studies, 1986, 25( 3): 249– 269
CrossRef
Google scholar
|
[285] |
Bae S, Kim H, Lee Y, ,
CrossRef
Pubmed
Google scholar
|
[286] |
Ryu J, Kim Y, Won D, ,
CrossRef
Pubmed
Google scholar
|
[287] |
Das T, Sharma B K, Katiyar A K, ,
CrossRef
Google scholar
|
[288] |
Wu J, Agrawal M, Becerril H A, ,
CrossRef
Pubmed
Google scholar
|
[289] |
Matyba P, Yamaguchi H, Eda G, ,
CrossRef
Pubmed
Google scholar
|
[290] |
Chang H, Wang G, Yang A, ,
CrossRef
Google scholar
|
[291] |
Han T H, Lee Y, Choi M R, ,
CrossRef
Google scholar
|
[292] |
Kim S Y, Kim J J . Outcoupling efficiency of organic light emitting diodes and the effect of ITO thickness. Organic Electronics, 2010, 11( 6): 1010– 1015
CrossRef
Google scholar
|
[293] |
Furno M, Meerheim R, Hofmann S, ,
CrossRef
Google scholar
|
[294] |
Lee J, Han T H, Park M H, ,
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |