Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination

Rengasamy DHANABAL , Suhash Ranjan DEY

Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (2) : 220595

PDF (27478KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (2) : 220595 DOI: 10.1007/s11706-022-0595-7
REVIEW ARTICLE
REVIEW ARTICLE

Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination

Author information +
History +
PDF (27478KB)

Abstract

Organometallic perovskite is a new generation photovoltaic material with exemplary properties such as high absorption co-efficient, optimal bandgap, high defect tolerance factor and long carrier diffusion length. However, suitable electrodes and charge transport materials are required to fulfill photovoltaic processes where interfaces between hole transport material/perovskite and perovskite/electron transport material are affected by phenomena of charge carrier separation, transportation, collection by the interfaces and band alignment. Based on recent available literature and several strategies for minimizing the recombination of charge carriers at the interfaces, this review addresses the properties of hole transport materials, relevant working mechanisms, and the interface engineering of perovskite solar cell (PSC) device architecture, which also provides significant insights to design and development of PSC devices with high efficiency.

Graphical abstract

Keywords

light absorption / p–i–n and n–i–p structure / interface recombination / build-in potential / perovskite solar cell

Cite this article

Download citation ▾
Rengasamy DHANABAL, Suhash Ranjan DEY. Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination. Front. Mater. Sci., 2022, 16(2): 220595 DOI:10.1007/s11706-022-0595-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Re N, May R M, Dooley J J, , . Photovoltaic technology: the case for thin film solar cells. Advancement of Science, 2010, 285( 5428): 692– 698

[2]

Carey G H, Abdelhady A L, Ning Z, , . Colloidal quantum dot solar cells. Chemical Reviews, 2015, 115( 23): 12732– 12763

[3]

Park N G, Segawa H . Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics, 2018, 5( 8): 2970– 2977

[4]

Schmidt-Mende L, Dyakonov V, Olthof S, , . Roadmap on organic‒inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9( 10): 109202

[5]

Kim J Y, Lee J W, Jung H S, , . High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120( 15): 7867– 7918

[6]

Ho-Baillie A W Y, Zheng J, Mahmud M A, , . Recent progress and future prospects of perovskite tandem solar cells. Applied Physics Reviews, 2021, 8( 4): 041307

[7]

Chen Q, De Marco N, Yang Y, , . Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10( 3): 355– 396

[8]

Kung P K, Li M H, Lin P Y, , . A review of inorganic hole transport materials for perovskite solar cells. Advanced Materials Interfaces, 2018, 5( 22): 1800882

[9]

Wu T, Qin Z, Wang Y, , . The main progress of perovskite solar cells in 2020–2021. Nano-Micro Letters, 2021, 13( 1): 152

[10]

Im J H, Lee C R, Lee J W, , . 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3( 10): 4088– 4093

[11]

Bai Y, Meng X, Yang S . Interface engineering for highly efficient and stable planar p–i–n perovskite solar cells. Advanced Energy Materials, 2018, 8( 5): 1701883

[12]

Stranks S D, Eperon G E, Grancini G, , . Electron‒hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342( 6156): 341– 344

[13]

Noh J H, Im S H, Heo J H, , . Chemical management for colorful, efficient, and stable inorganic‒organic hybrid nanostructured solar cells. Nano Letters, 2013, 13( 4): 1764– 1769

[14]

Correa-Baena J P, Abate A, Saliba M, , . The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 2017, 10( 3): 710– 727

[15]

Qu J, Jiang X, Yu Z, , . Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt. Science China Chemistry, 2018, 61( 2): 172– 179

[16]

Kumar N S, Naidu K C B . A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7( 5): 940– 956

[17]

Kojima A, Teshima K, Shirai Y, , . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051

[18]

NREL. Chart: Best research — cell efficiencies. Available from:

[19]

Ghazy A, Safdar M, Lastusaari M, , . Advances in upconversion enhanced solar cell performance. Solar Energy Materials and Solar Cells, 2021, 230 : 111234

[20]

Luo D, Su R, Zhang W, , . Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 2020, 5( 1): 44– 60

[21]

Tonui P, Oseni S O, Sharma G, , . Perovskites photovoltaic solar cells: an overview of current status. Renewable & Sustainable Energy Reviews, 2018, 91 : 1025– 1044

[22]

Lim E L, Yap C C, Jumali M H H, , . A mini review: can graphene be a novel material for perovskite solar cell applications?. Nano-Micro Letters, 2018, 10( 2): 27

[23]

Tan H Q, Zhao X, Jiao A, , . Optimizing bifacial all-perovskite tandem solar cell: how to balance light absorption and recombination. Solar Energy, 2022, 231 : 1092– 1106

[24]

Kang D H, Park N G . On the current‒voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31( 34): 1805214

[25]

Xu Y, Lin Q . Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Applied Physics Reviews, 2020, 7( 1): 011315

[26]

Yu Z, Sun L . Inorganic hole-transporting materials for perovskite solar cells. Small Methods, 2018, 2( 2): 1700280

[27]

Mali S S, Hong C K . p–i–n/n–i–p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8( 20): 10528– 10540

[28]

Tress W, Marinova N, Inganas O,, . In: 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), 2014, 1563‒ 1566

[29]

Zhu L, Xiao J, Shi J, , . Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 2015, 8( 4): 1116– 1127

[30]

Sarritzu V, Sestu N, Marongiu D, , . Optical determination of Shockley‒Read‒Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7 : 44629

[31]

Tvingstedt K, Malinkiewicz O, Baumann A, , . Radiative efficiency of lead iodide based perovskite solar cells. Scientific Reports, 2014, 4 : 6071

[32]

You J, Meng L, Song T B, , . Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11( 1): 75– 81

[33]

Li S, Cao Y L, Li W H, , . A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals, 2021, 40( 10): 2712– 2729

[34]

Zhu Z, Bai Y, Zhang T, , . High-performance hole-extraction layer of sol‒gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angewandte Chemie International Edition, 2014, 53( 46): 12571– 12575

[35]

Ma F, Zhao Y, Li J, , . Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 2021, 52 : 393– 411

[36]

Yin X, Song Z, Li Z, , . Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy & Environmental Science, 2020, 13( 11): 4057– 4086

[37]

Park J H, Seo J, Park S, , . Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Advanced Materials, 2015, 27( 27): 4013– 4019

[38]

Liu J, Pathak S, Stergiopoulos T, , . Employing PEDOT as the p-type charge collection layer in regular organic–inorganic perovskite solar cells. The Journal of Physical Chemistry Letters, 2015, 6( 9): 1666– 1673

[39]

Qin P, Tanaka S, Ito S, , . Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Communications, 2014, 5 : 3834

[40]

Madhavan V E, Zimmermann I, Roldán-Carmona C, , . Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Letters, 2016, 1( 6): 1112– 1117

[41]

Ye S, Sun W, Li Y, , . CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Letters, 2015, 15( 6): 3723– 3728

[42]

Madhavan V E, Zimmermann I, Baloch A A B, , . CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Applied Energy Materials, 2020, 3( 1): 114– 121

[43]

Naqvi S, Patra A . Hole transport materials for perovskite solar cells: a computational study. Materials Chemistry and Physics, 2021, 258 : 123863

[44]

Christians J A, Fung R C M, Kamat P V . An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society, 2014, 136( 2): 758– 764

[45]

Chen W Y, Deng L L, Dai S M, , . Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 38): 19353– 19359

[46]

Nazari P, Ansari F, Nejand B A, , . Physicochemical interface engineering of CuI/Cu as advanced potential hole-transporting materials/metal contact couples in hysteresis-free ultralow-cost and large-area perovskite solar cells. The Journal of Physical Chemistry C, 2017, 121( 40): 21935– 21944

[47]

Wang H, Yu Z, Lai J, , . One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 43): 21435– 21444

[48]

Xu X P, Li S Y, Li Y, , . Recent progress in organic hole-transporting materials with 4-anisylamino-based end caps for efficient perovskite solar cells. Rare Metals, 2021, 40( 7): 1669– 1690

[49]

Elumalai N K, Vijila C, Jose R, , . Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications. Materials for Renewable and Sustainable Energy, 2015, 4( 3): 11

[50]

Magaldi D, Ulfa M, Nghiem M P, , . Hole transporting materials for perovskite solar cells: molecular versus polymeric carbazole-based derivatives. Journal of Materials Science, 2020, 55( 11): 4820– 4829

[51]

Jena A K, Numata Y, Ikegami M, , . Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 5): 2219– 2230

[52]

Li W, Lai X, Meng F, , . Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 211 : 110527

[53]

Matsushita A, Yanagida M, Shirai Y, , . Degradation of perovskite solar cells by the doping level decrease of HTL revealed by capacitance spectroscopy. Solar Energy Materials and Solar Cells, 2021, 220 : 110854

[54]

Wang Q, Dong Q, Li T, , . Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Advanced Materials, 2016, 28( 31): 6734– 6739

[55]

Dhakal R, Huh Y, Galipeau D, , . Chapter 16: AlSb compound semiconductor as absorber layer in thin film solar cells. In: Kosyachenko L A, ed. Solar Cells ― New Aspects and Solutions. Rijeka, Croatia: InTech, 2011, 341– 356

[56]

Liu S, Liu R, Chen Y, , . Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes. Chemistry of Materials, 2014, 26( 15): 4528– 4534

[57]

Kokubun Y, Watanabe H, Wada M . Electrical properties of CuI thin films. Japanese Journal of Applied Physics, 1971, 10( 7): 864– 867

[58]

Yu W, Li F, Wang H, , . Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 2016, 8( 11): 6173– 6179

[59]

Yang W S, Noh J H, Jeon N J . High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348( 6240): 1234– 1237

[60]

Rutledge S A, Helmy A S . Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. Journal of Applied Physics, 2013, 114( 13): 133708– 133713

[61]

Heo J H, Im S H, Noh J H, , . Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7( 6): 486– 491

[62]

McCulloch I, Heeney M, Bailey C, , . Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Materials, 2006, 5( 4): 328– 333

[63]

Habisreutinger S N, Leijtens T, Eperon G E, , . Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 2014, 14( 10): 5561– 5568

[64]

Ahn N, Son D Y, Jang I H, , . Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. Journal of the American Chemical Society, 2015, 137( 27): 8696– 8699

[65]

Nguyen W H, Bailie C D, Unger E L, , . Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. Journal of the American Chemical Society, 2014, 136( 31): 10996– 11001

[66]

Gottesman R, Lopez-Varo P, Gouda L, , . Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. CHEM, 2016, 1( 5): 776– 789

[67]

Dhanabal R, Velmathi S, Bose A C . Fabrication of RuO2‒Ag3PO4 heterostructure nanocomposites: investigations of band alignment on the enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2018, 344 : 865– 874

[68]

Choi H, Mai C K, Kim H B, , . Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6 : 7348

[69]

Gu Z, Zuo L, Larsen-Olsen T T, , . Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 48): 24254– 24260

[70]

Xi Q, Gao G, Zhou H, , . Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN. Nanoscale, 2017, 9( 18): 6136– 6144

[71]

Liu P, Liu Z, Qin C, , . High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212 : 110555

[72]

Bai Y, Chen H, Xiao S, , . Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Advanced Functional Materials, 2016, 26( 17): 2950– 2958

[73]

Haider M I, Fakharuddin A, Ahmed S, , . Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells. Solar Energy, 2022, 233 : 326– 336

[74]

You J, Meng L, Song T B, , . Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11( 1): 75– 81

[75]

Vijayaraghavan S N, Wall J, Menon H G, , . Interfacial engineering with NiOx nanofibers as hole transport layer for carbon-based perovskite solar cells. Solar Energy, 2021, 230 : 591– 597

[76]

Ma Y, Zhang Y, Zhang H, , . Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance inverted perovskite solar cell. Applied Surface Science, 2021, 547 : 149117

[77]

Hu L, Zhao Q, Huang S, , . Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nature Communications, 2021, 12 : 466

[78]

Zheng Y, Kong J, Huang D, , . Spray coating of the PCBM electron transport layer significantly improves the efficiency of p–i–n planar perovskite solar cells. Nanoscale, 2018, 10( 24): 11342– 11348

[79]

Zhu Z, Xue Q, He H, , . A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance. Advanced Science, 2016, 3( 9): 1500353

[80]

Wu F, Gao W, Yu H, , . Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 10): 4443– 4448

[81]

Zhou J, Hou J, Tao X, , . Solution-processed electron transport layer of n-doped fullerene for efficient and stable all carbon based perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 13): 7710– 7716

[82]

Yang D, Zhang X, Wang K, , . Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Letters, 2019, 19( 5): 3313– 3320

[83]

Li M, Du B, Wu Y, , . Fused-ring electron acceptor as an efficient interfacial material for planar and flexible perovskite solar cells. Organic Electronics, 2021, 98 : 106293

[84]

Huang Y, Zhong H, Li W, , . Bifunctional ionic liquid for enhancing efficiency and stability of carbon counter electrode-based MAPbI3 perovskites solar cells. Solar Energy, 2022, 231 : 1048– 1060

[85]

Ke W, Fang G, Liu Q, , . Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. Journal of the American Chemical Society, 2015, 137( 21): 6730– 6733

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (27478KB)

1798

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/