
Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination
Rengasamy DHANABAL, Suhash Ranjan DEY
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (2) : 220595.
Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination
Organometallic perovskite is a new generation photovoltaic material with exemplary properties such as high absorption co-efficient, optimal bandgap, high defect tolerance factor and long carrier diffusion length. However, suitable electrodes and charge transport materials are required to fulfill photovoltaic processes where interfaces between hole transport material/perovskite and perovskite/electron transport material are affected by phenomena of charge carrier separation, transportation, collection by the interfaces and band alignment. Based on recent available literature and several strategies for minimizing the recombination of charge carriers at the interfaces, this review addresses the properties of hole transport materials, relevant working mechanisms, and the interface engineering of perovskite solar cell (PSC) device architecture, which also provides significant insights to design and development of PSC devices with high efficiency.
light absorption / p–i–n and n–i–p structure / interface recombination / build-in potential / perovskite solar cell
[1] |
Re N, May R M, Dooley J J, ,
|
[2] |
Carey G H, Abdelhady A L, Ning Z, ,
CrossRef
Pubmed
Google scholar
|
[3] |
Park N G, Segawa H . Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics, 2018, 5( 8): 2970– 2977
CrossRef
Google scholar
|
[4] |
Schmidt-Mende L, Dyakonov V, Olthof S, ,
CrossRef
Google scholar
|
[5] |
Kim J Y, Lee J W, Jung H S, ,
CrossRef
Pubmed
Google scholar
|
[6] |
Ho-Baillie A W Y, Zheng J, Mahmud M A, ,
CrossRef
Google scholar
|
[7] |
Chen Q, De Marco N, Yang Y, ,
CrossRef
Google scholar
|
[8] |
Kung P K, Li M H, Lin P Y, ,
CrossRef
Google scholar
|
[9] |
Wu T, Qin Z, Wang Y, ,
CrossRef
Google scholar
|
[10] |
Im J H, Lee C R, Lee J W, ,
CrossRef
Pubmed
Google scholar
|
[11] |
Bai Y, Meng X, Yang S . Interface engineering for highly efficient and stable planar p–i–n perovskite solar cells. Advanced Energy Materials, 2018, 8( 5): 1701883
CrossRef
Google scholar
|
[12] |
Stranks S D, Eperon G E, Grancini G, ,
CrossRef
Pubmed
Google scholar
|
[13] |
Noh J H, Im S H, Heo J H, ,
CrossRef
Pubmed
Google scholar
|
[14] |
Correa-Baena J P, Abate A, Saliba M, ,
CrossRef
Google scholar
|
[15] |
Qu J, Jiang X, Yu Z, ,
CrossRef
Google scholar
|
[16] |
Kumar N S, Naidu K C B . A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7( 5): 940– 956
CrossRef
Google scholar
|
[17] |
Kojima A, Teshima K, Shirai Y, ,
CrossRef
Pubmed
Google scholar
|
[18] |
NREL. Chart: Best research — cell efficiencies. Available from:
|
[19] |
Ghazy A, Safdar M, Lastusaari M, ,
CrossRef
Google scholar
|
[20] |
Luo D, Su R, Zhang W, ,
CrossRef
Google scholar
|
[21] |
Tonui P, Oseni S O, Sharma G, ,
CrossRef
Google scholar
|
[22] |
Lim E L, Yap C C, Jumali M H H, ,
CrossRef
Pubmed
Google scholar
|
[23] |
Tan H Q, Zhao X, Jiao A, ,
CrossRef
Google scholar
|
[24] |
Kang D H, Park N G . On the current‒voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31( 34): 1805214
CrossRef
Google scholar
|
[25] |
Xu Y, Lin Q . Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Applied Physics Reviews, 2020, 7( 1): 011315
CrossRef
Google scholar
|
[26] |
Yu Z, Sun L . Inorganic hole-transporting materials for perovskite solar cells. Small Methods, 2018, 2( 2): 1700280
CrossRef
Google scholar
|
[27] |
Mali S S, Hong C K . p–i–n/n–i–p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8( 20): 10528– 10540
CrossRef
Pubmed
Google scholar
|
[28] |
Tress W, Marinova N, Inganas O,,
|
[29] |
Zhu L, Xiao J, Shi J, ,
CrossRef
Google scholar
|
[30] |
Sarritzu V, Sestu N, Marongiu D, ,
CrossRef
Google scholar
|
[31] |
Tvingstedt K, Malinkiewicz O, Baumann A, ,
CrossRef
Google scholar
|
[32] |
You J, Meng L, Song T B, ,
CrossRef
Pubmed
Google scholar
|
[33] |
Li S, Cao Y L, Li W H, ,
CrossRef
Google scholar
|
[34] |
Zhu Z, Bai Y, Zhang T, ,
CrossRef
Pubmed
Google scholar
|
[35] |
Ma F, Zhao Y, Li J, ,
CrossRef
Google scholar
|
[36] |
Yin X, Song Z, Li Z, ,
CrossRef
Google scholar
|
[37] |
Park J H, Seo J, Park S, ,
CrossRef
Pubmed
Google scholar
|
[38] |
Liu J, Pathak S, Stergiopoulos T, ,
CrossRef
Google scholar
|
[39] |
Qin P, Tanaka S, Ito S, ,
CrossRef
Google scholar
|
[40] |
Madhavan V E, Zimmermann I, Roldán-Carmona C, ,
CrossRef
Google scholar
|
[41] |
Ye S, Sun W, Li Y, ,
CrossRef
Pubmed
Google scholar
|
[42] |
Madhavan V E, Zimmermann I, Baloch A A B, ,
CrossRef
Google scholar
|
[43] |
Naqvi S, Patra A . Hole transport materials for perovskite solar cells: a computational study. Materials Chemistry and Physics, 2021, 258 : 123863
CrossRef
Google scholar
|
[44] |
Christians J A, Fung R C M, Kamat P V . An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society, 2014, 136( 2): 758– 764
CrossRef
Pubmed
Google scholar
|
[45] |
Chen W Y, Deng L L, Dai S M, ,
CrossRef
Google scholar
|
[46] |
Nazari P, Ansari F, Nejand B A, ,
CrossRef
Google scholar
|
[47] |
Wang H, Yu Z, Lai J, ,
CrossRef
Google scholar
|
[48] |
Xu X P, Li S Y, Li Y, ,
CrossRef
Google scholar
|
[49] |
Elumalai N K, Vijila C, Jose R, ,
CrossRef
Google scholar
|
[50] |
Magaldi D, Ulfa M, Nghiem M P, ,
CrossRef
Google scholar
|
[51] |
Jena A K, Numata Y, Ikegami M, ,
CrossRef
Google scholar
|
[52] |
Li W, Lai X, Meng F, ,
CrossRef
Google scholar
|
[53] |
Matsushita A, Yanagida M, Shirai Y, ,
CrossRef
Google scholar
|
[54] |
Wang Q, Dong Q, Li T, ,
CrossRef
Pubmed
Google scholar
|
[55] |
Dhakal R, Huh Y, Galipeau D, ,
|
[56] |
Liu S, Liu R, Chen Y, ,
CrossRef
Google scholar
|
[57] |
Kokubun Y, Watanabe H, Wada M . Electrical properties of CuI thin films. Japanese Journal of Applied Physics, 1971, 10( 7): 864– 867
CrossRef
Google scholar
|
[58] |
Yu W, Li F, Wang H, ,
CrossRef
Pubmed
Google scholar
|
[59] |
Yang W S, Noh J H, Jeon N J . High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348( 6240): 1234– 1237
CrossRef
Google scholar
|
[60] |
Rutledge S A, Helmy A S . Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. Journal of Applied Physics, 2013, 114( 13): 133708– 133713
CrossRef
Google scholar
|
[61] |
Heo J H, Im S H, Noh J H, ,
CrossRef
Google scholar
|
[62] |
McCulloch I, Heeney M, Bailey C, ,
CrossRef
Pubmed
Google scholar
|
[63] |
Habisreutinger S N, Leijtens T, Eperon G E, ,
CrossRef
Pubmed
Google scholar
|
[64] |
Ahn N, Son D Y, Jang I H, ,
CrossRef
Pubmed
Google scholar
|
[65] |
Nguyen W H, Bailie C D, Unger E L, ,
CrossRef
Pubmed
Google scholar
|
[66] |
Gottesman R, Lopez-Varo P, Gouda L, ,
CrossRef
Google scholar
|
[67] |
Dhanabal R, Velmathi S, Bose A C . Fabrication of RuO2‒Ag3PO4 heterostructure nanocomposites: investigations of band alignment on the enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2018, 344 : 865– 874
CrossRef
Pubmed
Google scholar
|
[68] |
Choi H, Mai C K, Kim H B, ,
CrossRef
Google scholar
|
[69] |
Gu Z, Zuo L, Larsen-Olsen T T, ,
CrossRef
Google scholar
|
[70] |
Xi Q, Gao G, Zhou H, ,
CrossRef
Pubmed
Google scholar
|
[71] |
Liu P, Liu Z, Qin C, ,
CrossRef
Google scholar
|
[72] |
Bai Y, Chen H, Xiao S, ,
CrossRef
Google scholar
|
[73] |
Haider M I, Fakharuddin A, Ahmed S, ,
CrossRef
Google scholar
|
[74] |
You J, Meng L, Song T B, ,
CrossRef
Pubmed
Google scholar
|
[75] |
Vijayaraghavan S N, Wall J, Menon H G, ,
CrossRef
Google scholar
|
[76] |
Ma Y, Zhang Y, Zhang H, ,
CrossRef
Google scholar
|
[77] |
Hu L, Zhao Q, Huang S, ,
CrossRef
Google scholar
|
[78] |
Zheng Y, Kong J, Huang D, ,
CrossRef
Pubmed
Google scholar
|
[79] |
Zhu Z, Xue Q, He H, ,
CrossRef
Pubmed
Google scholar
|
[80] |
Wu F, Gao W, Yu H, ,
CrossRef
Google scholar
|
[81] |
Zhou J, Hou J, Tao X, ,
CrossRef
Google scholar
|
[82] |
Yang D, Zhang X, Wang K, ,
CrossRef
Pubmed
Google scholar
|
[83] |
Li M, Du B, Wu Y, ,
CrossRef
Google scholar
|
[84] |
Huang Y, Zhong H, Li W, ,
CrossRef
Google scholar
|
[85] |
Ke W, Fang G, Liu Q, ,
CrossRef
Pubmed
Google scholar
|
/
〈 |
|
〉 |