Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination

Rengasamy DHANABAL, Suhash Ranjan DEY

Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (2) : 220595.

PDF(27478 KB)
PDF(27478 KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (2) : 220595. DOI: 10.1007/s11706-022-0595-7
REVIEW ARTICLE
REVIEW ARTICLE

Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination

Author information +
History +

Abstract

Organometallic perovskite is a new generation photovoltaic material with exemplary properties such as high absorption co-efficient, optimal bandgap, high defect tolerance factor and long carrier diffusion length. However, suitable electrodes and charge transport materials are required to fulfill photovoltaic processes where interfaces between hole transport material/perovskite and perovskite/electron transport material are affected by phenomena of charge carrier separation, transportation, collection by the interfaces and band alignment. Based on recent available literature and several strategies for minimizing the recombination of charge carriers at the interfaces, this review addresses the properties of hole transport materials, relevant working mechanisms, and the interface engineering of perovskite solar cell (PSC) device architecture, which also provides significant insights to design and development of PSC devices with high efficiency.

Graphical abstract

Keywords

light absorption / p–i–n and n–i–p structure / interface recombination / build-in potential / perovskite solar cell

Cite this article

Download citation ▾
Rengasamy DHANABAL, Suhash Ranjan DEY. Perovskite solar cells: recent progress and strategies developed for minimizing interfacial recombination. Front. Mater. Sci., 2022, 16(2): 220595 https://doi.org/10.1007/s11706-022-0595-7

References

[1]
Re N, May R M, Dooley J J, , . Photovoltaic technology: the case for thin film solar cells. Advancement of Science, 2010, 285( 5428): 692– 698
[2]
Carey G H, Abdelhady A L, Ning Z, , . Colloidal quantum dot solar cells. Chemical Reviews, 2015, 115( 23): 12732– 12763
CrossRef Pubmed Google scholar
[3]
Park N G, Segawa H . Research direction toward theoretical efficiency in perovskite solar cells. ACS Photonics, 2018, 5( 8): 2970– 2977
CrossRef Google scholar
[4]
Schmidt-Mende L, Dyakonov V, Olthof S, , . Roadmap on organic‒inorganic hybrid perovskite semiconductors and devices. APL Materials, 2021, 9( 10): 109202
CrossRef Google scholar
[5]
Kim J Y, Lee J W, Jung H S, , . High-efficiency perovskite solar cells. Chemical Reviews, 2020, 120( 15): 7867– 7918
CrossRef Pubmed Google scholar
[6]
Ho-Baillie A W Y, Zheng J, Mahmud M A, , . Recent progress and future prospects of perovskite tandem solar cells. Applied Physics Reviews, 2021, 8( 4): 041307
CrossRef Google scholar
[7]
Chen Q, De Marco N, Yang Y, , . Under the spotlight: the organic–inorganic hybrid halide perovskite for optoelectronic applications. Nano Today, 2015, 10( 3): 355– 396
CrossRef Google scholar
[8]
Kung P K, Li M H, Lin P Y, , . A review of inorganic hole transport materials for perovskite solar cells. Advanced Materials Interfaces, 2018, 5( 22): 1800882
CrossRef Google scholar
[9]
Wu T, Qin Z, Wang Y, , . The main progress of perovskite solar cells in 2020–2021. Nano-Micro Letters, 2021, 13( 1): 152
CrossRef Google scholar
[10]
Im J H, Lee C R, Lee J W, , . 6.5% Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 2011, 3( 10): 4088– 4093
CrossRef Pubmed Google scholar
[11]
Bai Y, Meng X, Yang S . Interface engineering for highly efficient and stable planar p–i–n perovskite solar cells. Advanced Energy Materials, 2018, 8( 5): 1701883
CrossRef Google scholar
[12]
Stranks S D, Eperon G E, Grancini G, , . Electron‒hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013, 342( 6156): 341– 344
CrossRef Pubmed Google scholar
[13]
Noh J H, Im S H, Heo J H, , . Chemical management for colorful, efficient, and stable inorganic‒organic hybrid nanostructured solar cells. Nano Letters, 2013, 13( 4): 1764– 1769
CrossRef Pubmed Google scholar
[14]
Correa-Baena J P, Abate A, Saliba M, , . The rapid evolution of highly efficient perovskite solar cells. Energy & Environmental Science, 2017, 10( 3): 710– 727
CrossRef Google scholar
[15]
Qu J, Jiang X, Yu Z, , . Improved performance and air stability of perovskite solar cells based on low-cost organic hole-transporting material X60 by incorporating its dicationic salt. Science China Chemistry, 2018, 61( 2): 172– 179
CrossRef Google scholar
[16]
Kumar N S, Naidu K C B . A review on perovskite solar cells (PSCs), materials and applications. Journal of Materiomics, 2021, 7( 5): 940– 956
CrossRef Google scholar
[17]
Kojima A, Teshima K, Shirai Y, , . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009, 131( 17): 6050– 6051
CrossRef Pubmed Google scholar
[18]
NREL. Chart: Best research — cell efficiencies. Available from: https://www.nrel.gov/pv/assets/pdfs/cell-pv-eff-crysi.20200104.pdf
[19]
Ghazy A, Safdar M, Lastusaari M, , . Advances in upconversion enhanced solar cell performance. Solar Energy Materials and Solar Cells, 2021, 230 : 111234
CrossRef Google scholar
[20]
Luo D, Su R, Zhang W, , . Minimizing non-radiative recombination losses in perovskite solar cells. Nature Reviews Materials, 2020, 5( 1): 44– 60
CrossRef Google scholar
[21]
Tonui P, Oseni S O, Sharma G, , . Perovskites photovoltaic solar cells: an overview of current status. Renewable & Sustainable Energy Reviews, 2018, 91 : 1025– 1044
CrossRef Google scholar
[22]
Lim E L, Yap C C, Jumali M H H, , . A mini review: can graphene be a novel material for perovskite solar cell applications?. Nano-Micro Letters, 2018, 10( 2): 27
CrossRef Pubmed Google scholar
[23]
Tan H Q, Zhao X, Jiao A, , . Optimizing bifacial all-perovskite tandem solar cell: how to balance light absorption and recombination. Solar Energy, 2022, 231 : 1092– 1106
CrossRef Google scholar
[24]
Kang D H, Park N G . On the current‒voltage hysteresis in perovskite solar cells: dependence on perovskite composition and methods to remove hysteresis. Advanced Materials, 2019, 31( 34): 1805214
CrossRef Google scholar
[25]
Xu Y, Lin Q . Photodetectors based on solution-processable semiconductors: recent advances and perspectives. Applied Physics Reviews, 2020, 7( 1): 011315
CrossRef Google scholar
[26]
Yu Z, Sun L . Inorganic hole-transporting materials for perovskite solar cells. Small Methods, 2018, 2( 2): 1700280
CrossRef Google scholar
[27]
Mali S S, Hong C K . p–i–n/n–i–p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale, 2016, 8( 20): 10528– 10540
CrossRef Pubmed Google scholar
[28]
Tress W, Marinova N, Inganas O,, . In: 2014 IEEE 40th Photovoltaic Specialists Conference (PVSC), 2014, 1563‒ 1566
[29]
Zhu L, Xiao J, Shi J, , . Efficient CH3NH3PbI3 perovskite solar cells with 2TPA-n-DP hole-transporting layers. Nano Research, 2015, 8( 4): 1116– 1127
CrossRef Google scholar
[30]
Sarritzu V, Sestu N, Marongiu D, , . Optical determination of Shockley‒Read‒Hall and interface recombination currents in hybrid perovskites. Scientific Reports, 2017, 7 : 44629
CrossRef Google scholar
[31]
Tvingstedt K, Malinkiewicz O, Baumann A, , . Radiative efficiency of lead iodide based perovskite solar cells. Scientific Reports, 2014, 4 : 6071
CrossRef Google scholar
[32]
You J, Meng L, Song T B, , . Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11( 1): 75– 81
CrossRef Pubmed Google scholar
[33]
Li S, Cao Y L, Li W H, , . A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals, 2021, 40( 10): 2712– 2729
CrossRef Google scholar
[34]
Zhu Z, Bai Y, Zhang T, , . High-performance hole-extraction layer of sol‒gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angewandte Chemie International Edition, 2014, 53( 46): 12571– 12575
CrossRef Pubmed Google scholar
[35]
Ma F, Zhao Y, Li J, , . Nickel oxide for inverted structure perovskite solar cells. Journal of Energy Chemistry, 2021, 52 : 393– 411
CrossRef Google scholar
[36]
Yin X, Song Z, Li Z, , . Toward ideal hole transport materials: a review on recent progress in dopant-free hole transport materials for fabricating efficient and stable perovskite solar cells. Energy & Environmental Science, 2020, 13( 11): 4057– 4086
CrossRef Google scholar
[37]
Park J H, Seo J, Park S, , . Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-type NiO electrode formed by a pulsed laser deposition. Advanced Materials, 2015, 27( 27): 4013– 4019
CrossRef Pubmed Google scholar
[38]
Liu J, Pathak S, Stergiopoulos T, , . Employing PEDOT as the p-type charge collection layer in regular organic–inorganic perovskite solar cells. The Journal of Physical Chemistry Letters, 2015, 6( 9): 1666– 1673
CrossRef Google scholar
[39]
Qin P, Tanaka S, Ito S, , . Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency. Nature Communications, 2014, 5 : 3834
CrossRef Google scholar
[40]
Madhavan V E, Zimmermann I, Roldán-Carmona C, , . Copper thiocyanate inorganic hole-transporting material for high-efficiency perovskite solar cells. ACS Energy Letters, 2016, 1( 6): 1112– 1117
CrossRef Google scholar
[41]
Ye S, Sun W, Li Y, , . CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6%. Nano Letters, 2015, 15( 6): 3723– 3728
CrossRef Pubmed Google scholar
[42]
Madhavan V E, Zimmermann I, Baloch A A B, , . CuSCN as hole transport material with 3D/2D perovskite solar cells. ACS Applied Energy Materials, 2020, 3( 1): 114– 121
CrossRef Google scholar
[43]
Naqvi S, Patra A . Hole transport materials for perovskite solar cells: a computational study. Materials Chemistry and Physics, 2021, 258 : 123863
CrossRef Google scholar
[44]
Christians J A, Fung R C M, Kamat P V . An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. Journal of the American Chemical Society, 2014, 136( 2): 758– 764
CrossRef Pubmed Google scholar
[45]
Chen W Y, Deng L L, Dai S M, , . Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 38): 19353– 19359
CrossRef Google scholar
[46]
Nazari P, Ansari F, Nejand B A, , . Physicochemical interface engineering of CuI/Cu as advanced potential hole-transporting materials/metal contact couples in hysteresis-free ultralow-cost and large-area perovskite solar cells. The Journal of Physical Chemistry C, 2017, 121( 40): 21935– 21944
CrossRef Google scholar
[47]
Wang H, Yu Z, Lai J, , . One plus one greater than two: high-performance inverted planar perovskite solar cells based on a composite CuI/CuSCN hole-transporting layer. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 43): 21435– 21444
CrossRef Google scholar
[48]
Xu X P, Li S Y, Li Y, , . Recent progress in organic hole-transporting materials with 4-anisylamino-based end caps for efficient perovskite solar cells. Rare Metals, 2021, 40( 7): 1669– 1690
CrossRef Google scholar
[49]
Elumalai N K, Vijila C, Jose R, , . Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications. Materials for Renewable and Sustainable Energy, 2015, 4( 3): 11
CrossRef Google scholar
[50]
Magaldi D, Ulfa M, Nghiem M P, , . Hole transporting materials for perovskite solar cells: molecular versus polymeric carbazole-based derivatives. Journal of Materials Science, 2020, 55( 11): 4820– 4829
CrossRef Google scholar
[51]
Jena A K, Numata Y, Ikegami M, , . Role of spiro-OMeTAD in performance deterioration of perovskite solar cells at high temperature and reuse of the perovskite films to avoid Pb-waste. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 5): 2219– 2230
CrossRef Google scholar
[52]
Li W, Lai X, Meng F, , . Efficient defect-passivation and charge-transfer with interfacial organophosphorus ligand modification for enhanced performance of perovskite solar cells. Solar Energy Materials and Solar Cells, 2020, 211 : 110527
CrossRef Google scholar
[53]
Matsushita A, Yanagida M, Shirai Y, , . Degradation of perovskite solar cells by the doping level decrease of HTL revealed by capacitance spectroscopy. Solar Energy Materials and Solar Cells, 2021, 220 : 110854
CrossRef Google scholar
[54]
Wang Q, Dong Q, Li T, , . Thin insulating tunneling contacts for efficient and water-resistant perovskite solar cells. Advanced Materials, 2016, 28( 31): 6734– 6739
CrossRef Pubmed Google scholar
[55]
Dhakal R, Huh Y, Galipeau D, , . Chapter 16: AlSb compound semiconductor as absorber layer in thin film solar cells. In: Kosyachenko L A, ed. Solar Cells ― New Aspects and Solutions. Rijeka, Croatia: InTech, 2011, 341– 356
[56]
Liu S, Liu R, Chen Y, , . Nickel oxide hole injection/transport layers for efficient solution-processed organic light-emitting diodes. Chemistry of Materials, 2014, 26( 15): 4528– 4534
CrossRef Google scholar
[57]
Kokubun Y, Watanabe H, Wada M . Electrical properties of CuI thin films. Japanese Journal of Applied Physics, 1971, 10( 7): 864– 867
CrossRef Google scholar
[58]
Yu W, Li F, Wang H, , . Ultrathin Cu2O as an efficient inorganic hole transporting material for perovskite solar cells. Nanoscale, 2016, 8( 11): 6173– 6179
CrossRef Pubmed Google scholar
[59]
Yang W S, Noh J H, Jeon N J . High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science, 2015, 348( 6240): 1234– 1237
CrossRef Google scholar
[60]
Rutledge S A, Helmy A S . Carrier mobility enhancement in poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) having undergone rapid thermal annealing. Journal of Applied Physics, 2013, 114( 13): 133708– 133713
CrossRef Google scholar
[61]
Heo J H, Im S H, Noh J H, , . Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics, 2013, 7( 6): 486– 491
CrossRef Google scholar
[62]
McCulloch I, Heeney M, Bailey C, , . Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nature Materials, 2006, 5( 4): 328– 333
CrossRef Pubmed Google scholar
[63]
Habisreutinger S N, Leijtens T, Eperon G E, , . Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Letters, 2014, 14( 10): 5561– 5568
CrossRef Pubmed Google scholar
[64]
Ahn N, Son D Y, Jang I H, , . Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. Journal of the American Chemical Society, 2015, 137( 27): 8696– 8699
CrossRef Pubmed Google scholar
[65]
Nguyen W H, Bailie C D, Unger E L, , . Enhancing the hole-conductivity of spiro-OMeTAD without oxygen or lithium salts by using spiro(TFSI)2 in perovskite and dye-sensitized solar cells. Journal of the American Chemical Society, 2014, 136( 31): 10996– 11001
CrossRef Pubmed Google scholar
[66]
Gottesman R, Lopez-Varo P, Gouda L, , . Dynamic phenomena at perovskite/electron-selective contact interface as interpreted from photovoltage decays. CHEM, 2016, 1( 5): 776– 789
CrossRef Google scholar
[67]
Dhanabal R, Velmathi S, Bose A C . Fabrication of RuO2‒Ag3PO4 heterostructure nanocomposites: investigations of band alignment on the enhanced visible light photocatalytic activity. Journal of Hazardous Materials, 2018, 344 : 865– 874
CrossRef Pubmed Google scholar
[68]
Choi H, Mai C K, Kim H B, , . Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nature Communications, 2015, 6 : 7348
CrossRef Google scholar
[69]
Gu Z, Zuo L, Larsen-Olsen T T, , . Interfacial engineering of self-assembled monolayer modified semi-roll-to-roll planar heterojunction perovskite solar cells on flexible substrates. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3( 48): 24254– 24260
CrossRef Google scholar
[70]
Xi Q, Gao G, Zhou H, , . Highly efficient inverted solar cells based on perovskite grown nanostructures mediated by CuSCN. Nanoscale, 2017, 9( 18): 6136– 6144
CrossRef Pubmed Google scholar
[71]
Liu P, Liu Z, Qin C, , . High-performance perovskite solar cells based on passivating interfacial and intergranular defects. Solar Energy Materials and Solar Cells, 2020, 212 : 110555
CrossRef Google scholar
[72]
Bai Y, Chen H, Xiao S, , . Effects of a molecular monolayer modification of NiO nanocrystal layer surfaces on perovskite crystallization and interface contact toward faster hole extraction and higher photovoltaic performance. Advanced Functional Materials, 2016, 26( 17): 2950– 2958
CrossRef Google scholar
[73]
Haider M I, Fakharuddin A, Ahmed S, , . Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells. Solar Energy, 2022, 233 : 326– 336
CrossRef Google scholar
[74]
You J, Meng L, Song T B, , . Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nature Nanotechnology, 2016, 11( 1): 75– 81
CrossRef Pubmed Google scholar
[75]
Vijayaraghavan S N, Wall J, Menon H G, , . Interfacial engineering with NiOx nanofibers as hole transport layer for carbon-based perovskite solar cells. Solar Energy, 2021, 230 : 591– 597
CrossRef Google scholar
[76]
Ma Y, Zhang Y, Zhang H, , . Effective carrier transport tuning of CuOx quantum dots hole interfacial layer for high-performance inverted perovskite solar cell. Applied Surface Science, 2021, 547 : 149117
CrossRef Google scholar
[77]
Hu L, Zhao Q, Huang S, , . Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nature Communications, 2021, 12 : 466
CrossRef Google scholar
[78]
Zheng Y, Kong J, Huang D, , . Spray coating of the PCBM electron transport layer significantly improves the efficiency of p–i–n planar perovskite solar cells. Nanoscale, 2018, 10( 24): 11342– 11348
CrossRef Pubmed Google scholar
[79]
Zhu Z, Xue Q, He H, , . A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance. Advanced Science, 2016, 3( 9): 1500353
CrossRef Pubmed Google scholar
[80]
Wu F, Gao W, Yu H, , . Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 10): 4443– 4448
CrossRef Google scholar
[81]
Zhou J, Hou J, Tao X, , . Solution-processed electron transport layer of n-doped fullerene for efficient and stable all carbon based perovskite solar cells. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 13): 7710– 7716
CrossRef Google scholar
[82]
Yang D, Zhang X, Wang K, , . Stable efficiency exceeding 20.6% for inverted perovskite solar cells through polymer-optimized PCBM electron-transport layers. Nano Letters, 2019, 19( 5): 3313– 3320
CrossRef Pubmed Google scholar
[83]
Li M, Du B, Wu Y, , . Fused-ring electron acceptor as an efficient interfacial material for planar and flexible perovskite solar cells. Organic Electronics, 2021, 98 : 106293
CrossRef Google scholar
[84]
Huang Y, Zhong H, Li W, , . Bifunctional ionic liquid for enhancing efficiency and stability of carbon counter electrode-based MAPbI3 perovskites solar cells. Solar Energy, 2022, 231 : 1048– 1060
CrossRef Google scholar
[85]
Ke W, Fang G, Liu Q, , . Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. Journal of the American Chemical Society, 2015, 137( 21): 6730– 6733
CrossRef Pubmed Google scholar

Acknowledgements

R.D. (CSIR Award No: 09/1001 (0074)/2020-EMR-I) thanks Council of Scientific and Industrial Research (CSIR) for the financial assistance through Research Associates (CSIR-RA) programme.

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(27478 KB)

Accesses

Citations

Detail

Sections
Recommended

/