Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries

Zhenxiao LU , Zixiao ZHAO , Guangyin LIU , Xiaodi LIU , Renzhi YANG

Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (1) : 220593

PDF (1906KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (1) : 220593 DOI: 10.1007/s11706-022-0593-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries

Author information +
History +
PDF (1906KB)

Abstract

A novel hierarchical structure of bimetal sulfide FeS2@SnS2 with the 1D/2D heterostructure was developed for high-performance sodium-ion batteries (SIBs). The FeS2@SnS2 was synthesized through a hydrothermal reaction and a sulphuration process. The exquisite 1D/2D heterostructure is featured with 2D SnS2 nanoflakes anchoring on the 1D FeS2 nanorod. This well-designed FeS2@SnS2 provides shortened ion diffusion pathway and adequate surface area, which facilitates the Na+ transport and capacitive Na+ storage. Besides, the FeS2@SnS2 integrates the 1D/2D synthetic structural advantages and synthetic hybrid active material. Consequently, the FeS2@SnS2 anode exhibits high initial specific capacity of 765.5 mAh·g−1 at 1 A·g−1 and outstanding reversibility (506.0 mAh·g−1 at 1 A·g−1 after 200 cycles, 262.5 mAh·g−1 at 5 A·g−1 after 1400 cycles). Moreover, the kinetic analysis reveals that the FeS2@SnS2 anode displays significant capacitive behavior which boosts the rate capacity.

Graphical abstract

Keywords

sodium-ion battery / FeS 2@SnS 2 / 1D/2D / capacitance behavior

Cite this article

Download citation ▾
Zhenxiao LU, Zixiao ZHAO, Guangyin LIU, Xiaodi LIU, Renzhi YANG. Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries. Front. Mater. Sci., 2022, 16(1): 220593 DOI:10.1007/s11706-022-0593-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ma Y J , Ma Y , Giuli G . . Introducing highly redox-active atomic centers into insertion-type electrodes for lithium-ion batteries. Advanced Energy Materials, 2020, 10( 25): 2000783

[2]

Ku K , Kim B , Jung S K . . A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy & Environmental Science, 2020, 13( 4): 1269– 1278

[3]

Jia Y , Ma Z , Li Z . . Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries. Frontiers of Materials Science, 2019, 13( 4): 367– 374

[4]

Wu X , Xu Y , Zhang C . . Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. Journal of the American Chemical Society, 2019, 141( 15): 6338– 6344

[5]

Zhang Y , Tao L , Xie C . . Defect engineering on electrode materials for rechargeable batteries. Advanced Materials, 2020, 32( 7): 1905923

[6]

Lu Z X , Zhai Y J , Wang N N . . FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chemical Engineering Journal, 2020, 380 : 122455

[7]

Yang C , Xin S , Mai L . . Materials design for high-safety sodium-ion battery. Advanced Energy Materials, 2021, 11( 2): 2000974

[8]

Xu X , Lin K , Zhou D . . Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem, 2020, 6( 4): 902– 918

[9]

Liu P , Han J , Zhu K . . Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Advanced Energy Materials, 2020, 10( 24): 2000741

[10]

Lu X , Luo J , Matios E . . Enabling high-performance sodium metal anodes via a sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy, 2020, 69 : 104446

[11]

Zhai H , Jiang H , Qian Y . . Sb2S3 nanocrystals embedded in multichannel N-doped carbon nanofiber for ultralong cycle life sodium-ion batteries. Materials Chemistry and Physics, 2020, 240 : 122139

[12]

Chen W Y , Jiang X , Lai S N . . Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 2020, 11( 1): 1302

[13]

Wang F B , Li G D , Cui W F . FeS2 hollow nanospheres as high-performance anode for sodium ion battery and their surface pseudocapacitive properties. Journal of Nanoparticle Research, 2019, 21( 6): 121

[14]

Lin Z , Xiong X , Fan M . . Scalable synthesis of FeS2 nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. Nanoscale, 2019, 11( 9): 3773– 3779

[15]

Wang S W , Jing Y P , Han L F . . Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6( 2): 459– 464

[16]

Zang R , Li P X , Guo X . . Yolk–shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 23): 14051– 14059

[17]

Cao L , Gao X , Zhang B . . Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano, 2020, 14( 3): 3610– 3620

[18]

Luo B , Hu Y X , Zhu X B . . Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 4): 1462– 1472

[19]

Wu Y T , Nie P , Wu L Y . . 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chemical Engineering Journal, 2018, 334 : 932– 938

[20]

Wang S , Liu S , Li X . . SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries. Chemistry, 2018, 24( 15): 3873– 3881

[21]

Zhang X , Zhou J , Zheng Y . . Co0.85Se nanoparticles encapsulated by nitrogen-enriched hierarchically porous carbon for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, 12( 8): 9236– 9247

[22]

Xia J , Jiang K , Xie J . . Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chemical Engineering Journal, 2019, 359 : 1244– 1251

[23]

Ma M , Zhang S , Yao Y . . Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: superior potassium-ion storage and insight into potassium storage mechanism. Advanced Materials, 2020, 32( 22): 2000958

[24]

Zhao Y , Wang F , Wang C . . Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy, 2019, 56 : 426– 433

[25]

Yang C , Liang X , Ou X . . Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries. Advanced Functional Materials, 2019, 29( 9): 1807971

[26]

Ren X C , Wang J S , Zhu D M . . Sn−C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy, 2018, 54 : 322– 330

[27]

Liu Y H , Yu X Y , Fang Y J . . Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule, 2018, 2( 4): 725– 735

[28]

Zhao Y , Wang J J , Ma C L . . Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chemical Engineering Journal, 2019, 378 : 122168

[29]

Liu Y , Kang H , Jiao L . . Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale, 2015, 7( 4): 1325– 1332

[30]

Chen C M , Yang Y C , Tang X . . Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small, 2019, 15( 10): 1804740

[31]

Zeng L , Zhang L P , Liu X G . . SnS2 nanocrystalline-anchored three-dimensional graphene for sodium batteries with improved rate performance. Nanomaterials, 2020, 10( 12): 2336

[32]

Li Y F , Wang S G , Shi Y H . . In situ chemically encapsulated and controlled SnS2 nanocrystal composites for durable lithium/sodium-ion batteries. Dalton Transactions, 2020, 49( 44): 15874– 15882

[33]

Shao M , Cheng Y , Zhang T . . Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions. ACS Applied Materials & Interfaces, 2018, 10( 39): 33097– 33104

[34]

Wang S W , Jing Y P , Han L F . . Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6( 2): 459– 464

[35]

Liu Y , Hu X , Zhong G . . Layer-by-layer stacked nanohybrids of N,S-co-doped carbon film modified atomic MoS2 nanosheets for advanced sodium dual-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 42): 24271– 24280

[36]

Ren X , Zhu Y , Li Q . . A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 23): 11598– 11606

[37]

Gao P , Zhang Y Y , Wang L P . . In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures. Nano Energy, 2017, 32 : 302– 309

[38]

Li J , Han L , Li Y . . MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chemical Engineering Journal, 2020, 380 : 122590

[39]

Cao L , Zhang B , Ou X . . Synergistical coupling interconnected ZnS/SnS2 nanoboxes with polypyrrole-derived N/S dual-doped carbon for boosting high-performance sodium storage. Small, 2019, 15( 9): 1804861

[40]

Zhao J , Yu X , Gao Z G . . One step synthesis of SnS2 nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage. Chemical Engineering Journal, 2018, 332 : 548– 555

[41]

Xue P , Wang N , Fang Z . . Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Letters, 2019, 19( 3): 1998– 2004

[42]

Xu X , Zhao R S , Chen B . . Progressively exposing active facets of 2D nanosheets toward enhanced pseudocapacitive response and high-rate sodium storage. Advanced Materials, 2019, 31( 17): 1900526

[43]

Liu Y L , Wang N N , Zhao X H . . Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe2 nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 5): 2843– 2850

[44]

Wang N , Wang Y , Xu X . . Defect sites-rich porous carbon with pseudocapacitive behaviors as an ultrafast and long-term cycling anode for sodium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10( 11): 9353– 9361

RIGHTS & PERMISSIONS

Higher Education Press

AI Summary AI Mindmap
PDF (1906KB)

1466

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/