Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries
Zhenxiao LU, Zixiao ZHAO, Guangyin LIU, Xiaodi LIU, Renzhi YANG
Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries
A novel hierarchical structure of bimetal sulfide FeS2@SnS2 with the 1D/2D heterostructure was developed for high-performance sodium-ion batteries (SIBs). The FeS2@SnS2 was synthesized through a hydrothermal reaction and a sulphuration process. The exquisite 1D/2D heterostructure is featured with 2D SnS2 nanoflakes anchoring on the 1D FeS2 nanorod. This well-designed FeS2@SnS2 provides shortened ion diffusion pathway and adequate surface area, which facilitates the Na+ transport and capacitive Na+ storage. Besides, the FeS2@SnS2 integrates the 1D/2D synthetic structural advantages and synthetic hybrid active material. Consequently, the FeS2@SnS2 anode exhibits high initial specific capacity of 765.5 mAh·g−1 at 1 A·g−1 and outstanding reversibility (506.0 mAh·g−1 at 1 A·g−1 after 200 cycles, 262.5 mAh·g−1 at 5 A·g−1 after 1400 cycles). Moreover, the kinetic analysis reveals that the FeS2@SnS2 anode displays significant capacitive behavior which boosts the rate capacity.
sodium-ion battery / FeS2@SnS2 / 1D/2D / capacitance behavior
[1] |
Ma Y J , Ma Y , Giuli G .
CrossRef
Google scholar
|
[2] |
Ku K , Kim B , Jung S K .
CrossRef
Google scholar
|
[3] |
Jia Y , Ma Z , Li Z .
CrossRef
Google scholar
|
[4] |
Wu X , Xu Y , Zhang C .
CrossRef
Google scholar
|
[5] |
Zhang Y , Tao L , Xie C .
CrossRef
Google scholar
|
[6] |
Lu Z X , Zhai Y J , Wang N N .
CrossRef
Google scholar
|
[7] |
Yang C , Xin S , Mai L .
CrossRef
Google scholar
|
[8] |
Xu X , Lin K , Zhou D .
CrossRef
Google scholar
|
[9] |
Liu P , Han J , Zhu K .
CrossRef
Google scholar
|
[10] |
Lu X , Luo J , Matios E .
CrossRef
Google scholar
|
[11] |
Zhai H , Jiang H , Qian Y .
CrossRef
Google scholar
|
[12] |
Chen W Y , Jiang X , Lai S N .
CrossRef
Google scholar
|
[13] |
Wang F B , Li G D , Cui W F . FeS2 hollow nanospheres as high-performance anode for sodium ion battery and their surface pseudocapacitive properties. Journal of Nanoparticle Research, 2019, 21( 6): 121
CrossRef
Google scholar
|
[14] |
Lin Z , Xiong X , Fan M .
CrossRef
Google scholar
|
[15] |
Wang S W , Jing Y P , Han L F .
CrossRef
Google scholar
|
[16] |
Zang R , Li P X , Guo X .
CrossRef
Google scholar
|
[17] |
Cao L , Gao X , Zhang B .
CrossRef
Google scholar
|
[18] |
Luo B , Hu Y X , Zhu X B .
CrossRef
Google scholar
|
[19] |
Wu Y T , Nie P , Wu L Y .
CrossRef
Google scholar
|
[20] |
Wang S , Liu S , Li X .
CrossRef
Google scholar
|
[21] |
Zhang X , Zhou J , Zheng Y .
CrossRef
Google scholar
|
[22] |
Xia J , Jiang K , Xie J .
CrossRef
Google scholar
|
[23] |
Ma M , Zhang S , Yao Y .
CrossRef
Google scholar
|
[24] |
Zhao Y , Wang F , Wang C .
CrossRef
Google scholar
|
[25] |
Yang C , Liang X , Ou X .
CrossRef
Google scholar
|
[26] |
Ren X C , Wang J S , Zhu D M .
CrossRef
Google scholar
|
[27] |
Liu Y H , Yu X Y , Fang Y J .
CrossRef
Google scholar
|
[28] |
Zhao Y , Wang J J , Ma C L .
CrossRef
Google scholar
|
[29] |
Liu Y , Kang H , Jiao L .
CrossRef
Google scholar
|
[30] |
Chen C M , Yang Y C , Tang X .
CrossRef
Google scholar
|
[31] |
Zeng L , Zhang L P , Liu X G .
CrossRef
Google scholar
|
[32] |
Li Y F , Wang S G , Shi Y H .
CrossRef
Google scholar
|
[33] |
Shao M , Cheng Y , Zhang T .
CrossRef
Google scholar
|
[34] |
Wang S W , Jing Y P , Han L F .
CrossRef
Google scholar
|
[35] |
Liu Y , Hu X , Zhong G .
CrossRef
Google scholar
|
[36] |
Ren X , Zhu Y , Li Q .
CrossRef
Google scholar
|
[37] |
Gao P , Zhang Y Y , Wang L P .
CrossRef
Google scholar
|
[38] |
Li J , Han L , Li Y .
CrossRef
Google scholar
|
[39] |
Cao L , Zhang B , Ou X .
CrossRef
Google scholar
|
[40] |
Zhao J , Yu X , Gao Z G .
CrossRef
Google scholar
|
[41] |
Xue P , Wang N , Fang Z .
CrossRef
Google scholar
|
[42] |
Xu X , Zhao R S , Chen B .
CrossRef
Google scholar
|
[43] |
Liu Y L , Wang N N , Zhao X H .
CrossRef
Google scholar
|
[44] |
Wang N , Wang Y , Xu X .
CrossRef
Google scholar
|
/
〈 | 〉 |