Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries

Zhenxiao LU, Zixiao ZHAO, Guangyin LIU, Xiaodi LIU, Renzhi YANG

PDF(1906 KB)
PDF(1906 KB)
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (1) : 220593. DOI: 10.1007/s11706-022-0593-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries

Author information +
History +

Abstract

A novel hierarchical structure of bimetal sulfide FeS2@SnS2 with the 1D/2D heterostructure was developed for high-performance sodium-ion batteries (SIBs). The FeS2@SnS2 was synthesized through a hydrothermal reaction and a sulphuration process. The exquisite 1D/2D heterostructure is featured with 2D SnS2 nanoflakes anchoring on the 1D FeS2 nanorod. This well-designed FeS2@SnS2 provides shortened ion diffusion pathway and adequate surface area, which facilitates the Na+ transport and capacitive Na+ storage. Besides, the FeS2@SnS2 integrates the 1D/2D synthetic structural advantages and synthetic hybrid active material. Consequently, the FeS2@SnS2 anode exhibits high initial specific capacity of 765.5 mAh·g−1 at 1 A·g−1 and outstanding reversibility (506.0 mAh·g−1 at 1 A·g−1 after 200 cycles, 262.5 mAh·g−1 at 5 A·g−1 after 1400 cycles). Moreover, the kinetic analysis reveals that the FeS2@SnS2 anode displays significant capacitive behavior which boosts the rate capacity.

Graphical abstract

Keywords

sodium-ion battery / FeS2@SnS2 / 1D/2D / capacitance behavior

Cite this article

Download citation ▾
Zhenxiao LU, Zixiao ZHAO, Guangyin LIU, Xiaodi LIU, Renzhi YANG. Bimetallic sulfide FeS2@SnS2 as high-performance anodes for sodium-ion batteries. Front. Mater. Sci., 2022, 16(1): 220593 https://doi.org/10.1007/s11706-022-0593-9

References

[1]
Ma Y J , Ma Y , Giuli G . . Introducing highly redox-active atomic centers into insertion-type electrodes for lithium-ion batteries. Advanced Energy Materials, 2020, 10( 25): 2000783
CrossRef Google scholar
[2]
Ku K , Kim B , Jung S K . . A new lithium diffusion model in layered oxides based on asymmetric but reversible transition metal migration. Energy & Environmental Science, 2020, 13( 4): 1269– 1278
CrossRef Google scholar
[3]
Jia Y , Ma Z , Li Z . . Electrochemical performances of NiO/Ni2N nanocomposite thin film as anode material for lithium ion batteries. Frontiers of Materials Science, 2019, 13( 4): 367– 374
CrossRef Google scholar
[4]
Wu X , Xu Y , Zhang C . . Reverse dual-ion battery via a ZnCl2 water-in-salt electrolyte. Journal of the American Chemical Society, 2019, 141( 15): 6338– 6344
CrossRef Google scholar
[5]
Zhang Y , Tao L , Xie C . . Defect engineering on electrode materials for rechargeable batteries. Advanced Materials, 2020, 32( 7): 1905923
CrossRef Google scholar
[6]
Lu Z X , Zhai Y J , Wang N N . . FeS2 nanoparticles embedded in N/S co-doped porous carbon fibers as anode for sodium-ion batteries. Chemical Engineering Journal, 2020, 380 : 122455
CrossRef Google scholar
[7]
Yang C , Xin S , Mai L . . Materials design for high-safety sodium-ion battery. Advanced Energy Materials, 2021, 11( 2): 2000974
CrossRef Google scholar
[8]
Xu X , Lin K , Zhou D . . Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem, 2020, 6( 4): 902– 918
CrossRef Google scholar
[9]
Liu P , Han J , Zhu K . . Heterostructure SnSe2/ZnSe@PDA nanobox for stable and highly efficient sodium-ion storage. Advanced Energy Materials, 2020, 10( 24): 2000741
CrossRef Google scholar
[10]
Lu X , Luo J , Matios E . . Enabling high-performance sodium metal anodes via a sodiophilic structure constructed by hierarchical Sb2MoO6 microspheres. Nano Energy, 2020, 69 : 104446
CrossRef Google scholar
[11]
Zhai H , Jiang H , Qian Y . . Sb2S3 nanocrystals embedded in multichannel N-doped carbon nanofiber for ultralong cycle life sodium-ion batteries. Materials Chemistry and Physics, 2020, 240 : 122139
CrossRef Google scholar
[12]
Chen W Y , Jiang X , Lai S N . . Nanohybrids of a MXene and transition metal dichalcogenide for selective detection of volatile organic compounds. Nature Communications, 2020, 11( 1): 1302
CrossRef Google scholar
[13]
Wang F B , Li G D , Cui W F . FeS2 hollow nanospheres as high-performance anode for sodium ion battery and their surface pseudocapacitive properties. Journal of Nanoparticle Research, 2019, 21( 6): 121
CrossRef Google scholar
[14]
Lin Z , Xiong X , Fan M . . Scalable synthesis of FeS2 nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. Nanoscale, 2019, 11( 9): 3773– 3779
CrossRef Google scholar
[15]
Wang S W , Jing Y P , Han L F . . Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6( 2): 459– 464
CrossRef Google scholar
[16]
Zang R , Li P X , Guo X . . Yolk–shell N-doped carbon coated FeS2 nanocages as a high-performance anode for sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 23): 14051– 14059
CrossRef Google scholar
[17]
Cao L , Gao X , Zhang B . . Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries. ACS Nano, 2020, 14( 3): 3610– 3620
CrossRef Google scholar
[18]
Luo B , Hu Y X , Zhu X B . . Controllable growth of SnS2 nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6( 4): 1462– 1472
CrossRef Google scholar
[19]
Wu Y T , Nie P , Wu L Y . . 2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries. Chemical Engineering Journal, 2018, 334 : 932– 938
CrossRef Google scholar
[20]
Wang S , Liu S , Li X . . SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries. Chemistry, 2018, 24( 15): 3873– 3881
CrossRef Google scholar
[21]
Zhang X , Zhou J , Zheng Y . . Co0.85Se nanoparticles encapsulated by nitrogen-enriched hierarchically porous carbon for high-performance lithium-ion batteries. ACS Applied Materials & Interfaces, 2020, 12( 8): 9236– 9247
CrossRef Google scholar
[22]
Xia J , Jiang K , Xie J . . Tin disulfide embedded in N-, S-doped carbon nanofibers as anode material for sodium-ion batteries. Chemical Engineering Journal, 2019, 359 : 1244– 1251
CrossRef Google scholar
[23]
Ma M , Zhang S , Yao Y . . Heterostructures of 2D molybdenum dichalcogenide on 2D nitrogen-doped carbon: superior potassium-ion storage and insight into potassium storage mechanism. Advanced Materials, 2020, 32( 22): 2000958
CrossRef Google scholar
[24]
Zhao Y , Wang F , Wang C . . Encapsulating highly crystallized mesoporous Fe3O4 in hollow N-doped carbon nanospheres for high-capacity long-life sodium-ion batteries. Nano Energy, 2019, 56 : 426– 433
CrossRef Google scholar
[25]
Yang C , Liang X , Ou X . . Heterostructured nanocube-shaped binary sulfide (SnCo)S2 interlaced with S-doped graphene as a high-performance anode for advanced Na+ batteries. Advanced Functional Materials, 2019, 29( 9): 1807971
CrossRef Google scholar
[26]
Ren X C , Wang J S , Zhu D M . . Sn−C bonding riveted SnSe nanoplates vertically grown on nitrogen-doped carbon nanobelts for high-performance sodium-ion battery anodes. Nano Energy, 2018, 54 : 322– 330
CrossRef Google scholar
[27]
Liu Y H , Yu X Y , Fang Y J . . Confining SnS2 ultrathin nanosheets in hollow carbon nanostructures for efficient capacitive sodium storage. Joule, 2018, 2( 4): 725– 735
CrossRef Google scholar
[28]
Zhao Y , Wang J J , Ma C L . . Interconnected graphene nanosheets with confined FeS2/FeS binary nanoparticles as anode material of sodium-ion batteries. Chemical Engineering Journal, 2019, 378 : 122168
CrossRef Google scholar
[29]
Liu Y , Kang H , Jiao L . . Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries. Nanoscale, 2015, 7( 4): 1325– 1332
CrossRef Google scholar
[30]
Chen C M , Yang Y C , Tang X . . Graphene-encapsulated FeS2 in carbon fibers as high reversible anodes for Na+/K+ batteries in a wide temperature range. Small, 2019, 15( 10): 1804740
CrossRef Google scholar
[31]
Zeng L , Zhang L P , Liu X G . . SnS2 nanocrystalline-anchored three-dimensional graphene for sodium batteries with improved rate performance. Nanomaterials, 2020, 10( 12): 2336
CrossRef Google scholar
[32]
Li Y F , Wang S G , Shi Y H . . In situ chemically encapsulated and controlled SnS2 nanocrystal composites for durable lithium/sodium-ion batteries. Dalton Transactions, 2020, 49( 44): 15874– 15882
CrossRef Google scholar
[33]
Shao M , Cheng Y , Zhang T . . Designing MOFs-derived FeS2@carbon composites for high-rate sodium ion storage with capacitive contributions. ACS Applied Materials & Interfaces, 2018, 10( 39): 33097– 33104
CrossRef Google scholar
[34]
Wang S W , Jing Y P , Han L F . . Ultrathin carbon-coated FeS2 nanooctahedra for sodium storage with long cycling stability. Inorganic Chemistry Frontiers, 2019, 6( 2): 459– 464
CrossRef Google scholar
[35]
Liu Y , Hu X , Zhong G . . Layer-by-layer stacked nanohybrids of N,S-co-doped carbon film modified atomic MoS2 nanosheets for advanced sodium dual-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7( 42): 24271– 24280
CrossRef Google scholar
[36]
Ren X , Zhu Y , Li Q . . A novel multielement nanocomposite with ultrahigh rate capacity and durable performance for sodium-ion battery anodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 23): 11598– 11606
CrossRef Google scholar
[37]
Gao P , Zhang Y Y , Wang L P . . In situ atomic-scale observation of reversible sodium ions migration in layered metal dichalcogenide SnS2 nanostructures. Nano Energy, 2017, 32 : 302– 309
CrossRef Google scholar
[38]
Li J , Han L , Li Y . . MXene-decorated SnS2/Sn3S4 hybrid as anode material for high-rate lithium-ion batteries. Chemical Engineering Journal, 2020, 380 : 122590
CrossRef Google scholar
[39]
Cao L , Zhang B , Ou X . . Synergistical coupling interconnected ZnS/SnS2 nanoboxes with polypyrrole-derived N/S dual-doped carbon for boosting high-performance sodium storage. Small, 2019, 15( 9): 1804861
CrossRef Google scholar
[40]
Zhao J , Yu X , Gao Z G . . One step synthesis of SnS2 nanosheets assembled hierarchical tubular structures using metal chelate nanowires as a soluble template for improved Na-ion storage. Chemical Engineering Journal, 2018, 332 : 548– 555
CrossRef Google scholar
[41]
Xue P , Wang N , Fang Z . . Rayleigh-instability-induced bismuth nanorod@nitrogen-doped carbon nanotubes as a long cycling and high rate anode for sodium-ion batteries. Nano Letters, 2019, 19( 3): 1998– 2004
CrossRef Google scholar
[42]
Xu X , Zhao R S , Chen B . . Progressively exposing active facets of 2D nanosheets toward enhanced pseudocapacitive response and high-rate sodium storage. Advanced Materials, 2019, 31( 17): 1900526
CrossRef Google scholar
[43]
Liu Y L , Wang N N , Zhao X H . . Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe2 nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8( 5): 2843– 2850
CrossRef Google scholar
[44]
Wang N , Wang Y , Xu X . . Defect sites-rich porous carbon with pseudocapacitive behaviors as an ultrafast and long-term cycling anode for sodium-ion batteries. ACS Applied Materials & Interfaces, 2018, 10( 11): 9353– 9361
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21501101 and 52004100), the Natural Science Foundation of Henan Province (Grant No. 182300410226), and Nanyang Normal University (Grant No. 2022ZX007).

RIGHTS & PERMISSIONS

2022 Higher Education Press
AI Summary AI Mindmap
PDF(1906 KB)

Accesses

Citations

Detail

Sections
Recommended

/