Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics
Yuting ZHENG, Chengming LI, Jinlong LIU, Junjun WEI, Xiaotong ZHANG, Haitao YE, Xiaoping OUYANG
Chemical vapor deposited diamond with versatile grades: from gemstone to quantum electronics
Chemical vapor deposited (CVD) diamond as a burgeoning multi-functional material with tailored quality and characteristics can be artificially synthesized and controlled for various applications. Correspondingly, the application-related “grade” concept associated with materials choice and design was gradually formulated, of which the availability and the performance are optimally suited. In this review, the explicit diversity of CVD diamond and the clarification of typical grades for applications, i.e., from resplendent gem-grade to promising quantum-grade, were systematically summarized and discussed, according to the crystal quality and main consideration of ubiquitous nitrogen impurity content as well as major applications. Realizations of those, from quantum-grade with near-ideal crystal to electronic-grade having extremely low imperfections and then to optical, thermal as well as mechanical-grade needing controlled flaws and allowable impurities, would competently fulfill the multi-field application prospects with appropriate choice in terms of cost and quality. Exceptionally, wide range defects and impurities in the gem-grade diamond (only indicating single crystal), which are detrimental for technology applications, endows CVD crystals with fancy colors to challenge their natural counterparts.
CVD diamond / synthesis and characterization / quality and impurity / grading / application
[1] |
Ogden J. Diamonds: An Early History of the King of Gems. New Haven, USA: Yale University Press, 2018
|
[2] |
Breeding C M. Colored diamonds: the rarity and beauty of imperfection. Gems & Gemology, 2018, 54: 275
|
[3] |
Butler J E, Woodin R L. Thin film diamond growth mechanisms. Philosophical Transactions of the Royal Society of London Series A: Mathematical Physical and Engineering Sciences, 1993, 342(1664): 209–224
CrossRef
Google scholar
|
[4] |
Renfro N, Koivula J I, Wang W Y,
CrossRef
Google scholar
|
[5] |
Amaratunga G A J. A dawn for carbon electronics? Science, 2002, 297(5587): 1657–1658
CrossRef
Google scholar
|
[6] |
Liu T, Raabe D, Mao W M. A review of crystallographic textures in chemical vapor-deposited diamond films. Frontiers of Materials Science, 2010, 4(1): 1–16
CrossRef
Google scholar
|
[7] |
Cumont A, Pitt A R, Lambert P A,
CrossRef
Google scholar
|
[8] |
Zheng Y T, Wei J J, Liu J L,
CrossRef
Google scholar
|
[9] |
Yang H C, Ma Y D, Dai Y. Progress of structural and electronic properties of diamond: a mini review. Functional Diamond, 2021, 1(1): 150–159
CrossRef
Google scholar
|
[10] |
Mildren R P, Rabeau J R, eds. Optical Engineering of Diamond. 1st ed. Weinheim, Germany: Wiley-VCH, 2013
|
[11] |
Liu K, Zhang S, Ralchenko V,
CrossRef
Google scholar
|
[12] |
Bland S. Diamond circuits are forever: carbon. Materials Today, 2011, 14(10): 460
|
[13] |
Graebner J E, Reiss M E, Seibles L,
CrossRef
Google scholar
|
[14] |
Worner E, Wild C, Muller-Sebert W,
CrossRef
Google scholar
|
[15] |
Wang W H, Dai B, Wang Y,
|
[16] |
Kasugai A, Sakamoto K, Takahashi K,
CrossRef
Google scholar
|
[17] |
Coe S E, Sussmann R S. Optical, thermal and mechanical properties of CVD diamond. Diamond and Related Materials, 2000, 9(9–10): 1726–1729
CrossRef
Google scholar
|
[18] |
Heidinger R, Dammertz G, Meier A,
CrossRef
Google scholar
|
[19] |
Mildren R P. Intrinsic optical properties of diamond. In: Mildren R P, Rabeau J R, eds. Optical Engineering of Diamond. 1st ed. Weinheim, Germany: Wiley-VCH, 2013, 1–34
|
[20] |
Marinelli M, Milani E, Paoletti A,
CrossRef
Google scholar
|
[21] |
Bergonzo P, Barrett R, Hainaut O,
CrossRef
Google scholar
|
[22] |
Okushi H, Watanabe H, Ri S,
CrossRef
Google scholar
|
[23] |
Takeuchi D, Watanabe H, Yamanaka S,
CrossRef
Google scholar
|
[24] |
Takeuchi D, Yamanaka S, Watanabe H,
CrossRef
Google scholar
|
[25] |
Wort C J H, Balmer R S. Diamond as an electronic material. Materials Today, 2008, 11(1–2): 22–28
CrossRef
Google scholar
|
[26] |
Isberg J, Hammersberg J, Johansson E,
CrossRef
Google scholar
|
[27] |
Lee S T, Lifshitz Y. The road to diamond wafers. Nature, 2003, 424(6948): 500–501
CrossRef
Google scholar
|
[28] |
Prawer S, Greentree A D. Applied physics: diamond for quantum computing. Science, 2008, 320(5883): 1601–1602
CrossRef
Google scholar
|
[29] |
Field J E. The mechanical and strength properties of diamond. Reports on Progress in Physics, 2012, 75(12): 126505
CrossRef
Google scholar
|
[30] |
Garifo S, Stanicki D, Ayata G,
CrossRef
Google scholar
|
[31] |
Simakov S K. On the origin of large type IIa gem diamonds. Ore Geology Reviews, 2018, 102: 195–203
CrossRef
Google scholar
|
[32] |
Ke J, Lu T J, Lan Y,
|
[33] |
Kasu M. Diamond epitaxy: basics and applications. Progress in Crystal Growth and Characterization of Materials, 2016, 62(2): 317–328
CrossRef
Google scholar
|
[34] |
Eaton-Magaña S, Breeding C M. Features of synthetic diamonds. Gems & Gemology, 2018, 54(2): 202–204
CrossRef
Google scholar
|
[35] |
Wang W Y, Moses T, Linares R C,
CrossRef
Google scholar
|
[36] |
Schwander M, Partes K. A review of diamond synthesis by CVD processes. Diamond and Related Materials, 2011, 20(9): 1287–1301
CrossRef
Google scholar
|
[37] |
Balmer R S, Brandon J R, Clewes S L,
CrossRef
Google scholar
|
[38] |
Thoms B D, Russell J N, Pehrsson P E,
CrossRef
Google scholar
|
[39] |
Diggle P L, Haenens-Johansson U F S, Wang W Y,
|
[40] |
Shigley J E, Breeding C M. Optical defects in diamond: a quick reference chart. Gems & Gemology, 2013, 49(2): 107–111
CrossRef
Google scholar
|
[41] |
Fairchild B A, Rubanov S, Lau D W M,
CrossRef
Google scholar
|
[42] |
Fairchild B A, Olivero P, Rubanov S,
CrossRef
Google scholar
|
[43] |
Breeding C M, Shen A H, Eaton-Magaña S,
CrossRef
Google scholar
|
[44] |
Koenka I Y, Kauffmann Y, Hoffman A. Direct visualization and characterization of chemical bonding and phase composition of grain boundaries in polycrystalline diamond films by transmission electron microscopy and high-resolution electron energy loss spectroscopy. Applied Physics Letters, 2011, 99(20): 201907
CrossRef
Google scholar
|
[45] |
Ohmagari S, Yamada H, Tsubouchi N,
CrossRef
Google scholar
|
[46] |
Teraji T, Yamamoto T, Watanabe K,
CrossRef
Google scholar
|
[47] |
Shikata S, Yamaguchi K, Fujiwara A,
CrossRef
Google scholar
|
[48] |
Breeding C M, Shigley J E. The “type” classification system of diamonds and its importance in gemology. Gems & Gemology, 2009, 45(2): 96–111
CrossRef
Google scholar
|
[49] |
Ashfold M N R, Goss J P, Green B L,
CrossRef
Google scholar
|
[50] |
Nebel C E. Nitrogen-vacancy doped CVD diamond for quantum applications: a review. Semiconductors and Semimetals, 2020, 103: 73–136
CrossRef
Google scholar
|
[51] |
Howell D. Strain-induced birefringence in natural diamond: a review. European Journal of Mineralogy, 2012, 24(4): 575–585
CrossRef
Google scholar
|
[52] |
Groat L. Scientific study of colored gem deposits and modern fingerprinting methods. Gems & Gemology, 2018, 54(3): 277–278
|
[53] |
Pan L S, Kania D R, Pianetta P,
CrossRef
Google scholar
|
[54] |
Hartl A, Garrido J A, Nowy S,
CrossRef
Google scholar
|
[55] |
Onstad E, Clarke D. How man-made diamonds have grown to threaten natural gems. Reuters Business News, 2018
|
[56] |
Kitawaki H. Undisclosed samples of large CVD synthetic diamond. Gems & Gemology, 2013, 49(1): 60–61
|
[57] |
Renfro N D, Koivula J I, Muyal J,
|
[58] |
Cohen H, Ruthstein S. Evaluating the color and nature of diamonds via EPR spectroscopy. Gems & Gemology, 2018, 54(3): 276
|
[59] |
Magaña S E, Ardon T, Smit K V,
|
[60] |
Eaton-Magana S E, Ardon T, Zaitsev A M. LPHT annealing of brown-to-yellow type Ia diamonds. Diamond and Related Materials, 2017, 77: 159–170
CrossRef
Google scholar
|
[61] |
Gu T T, Wang W Y. Optical defects in milky type IaB diamonds. Diamond and Related Materials, 2018, 89: 322–329
CrossRef
Google scholar
|
[62] |
Collins A T. The detection of colour-enhanced and synthetic gem diamonds by optical spectroscopy. Diamond and Related Materials, 2003, 12(10–11): 1976–1983
CrossRef
Google scholar
|
[63] |
Fritsch E, Shigley J E, Moses T,
|
[64] |
Goss J P, Ewels C P, Briddon P R,
CrossRef
Google scholar
|
[65] |
Fujita N, Jones R, Öberg S,
CrossRef
Google scholar
|
[66] |
Eaton-Magana S, McElhenny G, Breeding C M,
CrossRef
Google scholar
|
[67] |
Hainschwang T, Notari F, Fritsch E,
CrossRef
Google scholar
|
[68] |
Zaitsev A M, Kazuchits N M, Kazuchits V N,
CrossRef
Google scholar
|
[69] |
De Weerdt F, Van Royen J. Defects in coloured natural diamonds. Diamond and Related Materials, 2001, 10(3–7): 474–479
CrossRef
Google scholar
|
[70] |
Jones R. Dislocations, vacancies and the brown colour of CVD and natural diamond. Diamond and Related Materials, 2009, 18(5–8): 820–826
CrossRef
Google scholar
|
[71] |
Wang W Y, Moe K S. CVD Synthetic diamond with fancy vivid orange color. Gems & Gemology, 2014, 50(4): 299
|
[72] |
Wang W Y, Moses T. Large pinkish orange CVD synthetic diamond. Gems & Gemology, 2018, 54(2): 216–217
|
[73] |
Moe K S, Wang W Y, D’Haenens-Johansson U. Yellow CVD synthetic diamond. Gems & Gemology, 2014, 50(2): 154–155
|
[74] |
Law B P L, Wang W Y. CVD synthetic diamond over 5 carats identified. Gems & Gemology, 2016, 52(4): 414–416
|
[75] |
Poon T, Lo C, Law B. Ring with a CVD synthetic melee. Gems & Gemology, 2016, 52(1): 75–76
|
[76] |
Magaña S. CVD synthetic diamond with unusual DiamondView image. Gems & Gemology, 2014, 50(1): 67–68
|
[77] |
Tang S, Su J, Lu T,
|
[78] |
Willems B, Tallaire A, Achard J. Optical study of defects in thick undoped CVD synthetic diamond layers. Diamond and Related Materials, 2014, 41: 25–33
CrossRef
Google scholar
|
[79] |
Eaton-Magaña S, Shigley J E. Observations on CVD-grown synthetic diamonds: a review. Gems & Gemology, 2016, 52(3): 222–245
CrossRef
Google scholar
|
[80] |
Butler J E. Chemical vapor deposited diamond: maturity and diversity. Electrochemical Society Interface, 2003, 12(1): 22–26
CrossRef
Google scholar
|
[81] |
Fritsch E, Phelps A W. Type IIb diamond thin films deposited onto near-colorless natural gem diamonds. Diamond and Related Materials, 1993, 2(2–4): 70–74
CrossRef
Google scholar
|
[82] |
Ardon T, McElhenny G. Synthetic diamond CVD layer grown on natural diamond. Gems & Gemology, 2019, 55(1): 97–99
|
[83] |
Wang W Y, D’Haenens-Johansson U F S, Johnson P,
CrossRef
Google scholar
|
[84] |
Zaitsev A M, Moe K S, Wang W Y. Defect transformations in nitrogen-doped CVD diamond during irradiation and annealing. Diamond and Related Materials, 2018, 88: 237–255
CrossRef
Google scholar
|
[85] |
Vins V G, Yelisseyev A P, Smovzh D V,
CrossRef
Google scholar
|
[86] |
Lim H, Park S, Cheong H,
CrossRef
Google scholar
|
[87] |
Polyakov S N, Denisov V N, Kuzmin N V,
CrossRef
Google scholar
|
[88] |
Han Q G, Li M Z, Jia X P,
CrossRef
Google scholar
|
[89] |
Wang Z K, Ma H A, Fang S,
CrossRef
Google scholar
|
[90] |
Stoupin S. Novel diamond X-ray crystal optics for synchrotrons and X-ray free-electron lasers. Diamond and Related Materials, 2014, 49: 39–47
CrossRef
Google scholar
|
[91] |
De Sio A, Bocci A, Pace E,
CrossRef
Google scholar
|
[92] |
Song Y, Peng B D, Song G Z,
CrossRef
Google scholar
|
[93] |
Tallaire A, Mille V, Brinza O,
CrossRef
Google scholar
|
[94] |
Achard J, Silva F, Brinza O,
CrossRef
Google scholar
|
[95] |
Silva F, Achard J, Brinza O,
CrossRef
Google scholar
|
[96] |
Tallaire A, Achard J, Brinza O,
CrossRef
Google scholar
|
[97] |
Vikharev A L, Lobaev M A, Gorbachev A M,
CrossRef
Google scholar
|
[98] |
Lab-grown and Mined Sectors. “Call a truce”. International Diamond Exchange (IDEX), 2020
|
[99] |
Zhao Z S, Xu B, Tian Y J. Recent advances in superhard materials. Annual Review of Materials Research, 2016, 46(1): 383–406
CrossRef
Google scholar
|
[100] |
Blank V, Popov M, Pivovarov G,
CrossRef
Google scholar
|
[101] |
Zhang L J, Wang Y C, Lv J,
CrossRef
Google scholar
|
[102] |
Liang Q, Yan C S, Meng Y F,
CrossRef
Google scholar
|
[103] |
Scott D E. The history of and impact of synthetic diamond cutters and diamond enhanced inserts on the oil and gas industry. Industrial Diamond Review, 2006, 66(1): 48–55
|
[104] |
Ge Y F, Xu J H, Yang H. Diamond tools wear and their applicability when ultra-precision turning of SiCp/2009Al matrix composite. Wear, 2010, 269(11–12): 699–708
CrossRef
Google scholar
|
[105] |
Ding X, Jarfors A E W, Lim G C,
CrossRef
Google scholar
|
[106] |
Kawasegi N, Kawashima T, Morita N,
CrossRef
Google scholar
|
[107] |
Chrenko R M, Strong H M. Physical Properties of Diamond Report No. 75CRDO89. Schenectady, NY: General Electric, 1975
|
[108] |
Niu H Y, Niu S W, Oganov A R. Simple and accurate model of fracture toughness of solids. Journal of Applied Physics, 2019, 125(6): 065105
CrossRef
Google scholar
|
[109] |
Hess P. The mechanical properties of various chemical vapor deposition diamond structures compared to the ideal single crystal. Journal of Applied Physics, 2012, 111(5): 051101
CrossRef
Google scholar
|
[110] |
Yan C S, Mao H K, Li W,
CrossRef
Google scholar
|
[111] |
Zong W J, Sun T, Li D,
CrossRef
Google scholar
|
[112] |
Sumiya H. Superhard diamond indenter prepared from high-purity synthetic diamond crystal. Review of Scientific Instruments, 2005, 76(2): 026112
CrossRef
Google scholar
|
[113] |
Irifune T, Kurio A, Sakamoto S,
CrossRef
Google scholar
|
[114] |
G’Hern M E, McHargue C J, Clausing R E,
|
[115] |
Novikov N V, Dub S N. Hardness and fracture toughness of CVD diamond film. Diamond and Related Materials, 1996, 5(9): 1026–1030
CrossRef
Google scholar
|
[116] |
Liang Y F, Zheng Y T, Wei J J,
CrossRef
Google scholar
|
[117] |
Zheng Y T, Ye H T, Thornton R,
CrossRef
Google scholar
|
[118] |
Zhao G L, Li Z Y, Hu M S,
CrossRef
Google scholar
|
[119] |
Pickles C S J. The fracture stress of chemical vapour deposited diamond. Diamond and Related Materials, 2002, 11(12): 1913–1922
CrossRef
Google scholar
|
[120] |
CVD Diamond Handbook. Element Six, De Beers Group, 2020
|
[121] |
An K, Chen L X, Yan X B,
CrossRef
Google scholar
|
[122] |
Paci J T, Belytschko T, Schatz G C. Mechanical properties of ultrananocrystalline diamond prepared in a nitrogen-rich plasma: a theoretical study. Physical Review B, 2006, 74(18): 184112
CrossRef
Google scholar
|
[123] |
Yang J X, Zhang H D, Li C M,
CrossRef
Google scholar
|
[124] |
Denkena B, Grove T, Gartzke T. Wear mechanisms of CVD diamond tools for patterning vitrified corundum grinding wheels. Wear, 2019, 436-437: 203007
CrossRef
Google scholar
|
[125] |
Qian J, McMurray C E, Mukhopadhyay D K,
CrossRef
Google scholar
|
[126] |
Li G X, Rahim M Z, Pan W C,
CrossRef
Google scholar
|
[127] |
Hu M, Ming W W, An Q L,
CrossRef
Google scholar
|
[128] |
Erasmus R M, Comins J D, Mofokeng V,
CrossRef
Google scholar
|
[129] |
Belmonte M, Ferro P, Fernandes A J S,
CrossRef
Google scholar
|
[130] |
Almeida F A, Fernandes A J S, Oliveira F J,
CrossRef
Google scholar
|
[131] |
Guo B, Wu M, Zhao Q,
CrossRef
Google scholar
|
[132] |
Sumiya H, Ishida Y. Real hardness of high-purity ultra-fine nano-polycrystalline diamond synthesized by direct conversion sintering under HPHT. Diamond and Related Materials, 2019, 100: 107560
CrossRef
Google scholar
|
[133] |
Huang Q, Yu D L, Xu B,
CrossRef
Google scholar
|
[134] |
Regan B, Aghajamali A, Froech J,
CrossRef
Google scholar
|
[135] |
Nie A M, Bu Y Q, Huang J Q,
CrossRef
Google scholar
|
[136] |
Liao M Y. Progress in semiconductor diamond photodetectors and MEMS sensors. Functional Diamond, 2021, 1(1): 29–46
CrossRef
Google scholar
|
[137] |
Sepulveda N, Lu J, Aslam D M,
CrossRef
Google scholar
|
[138] |
Castelletto S, Rosa L, Blackledge J,
CrossRef
Google scholar
|
[139] |
Tao Y, Boss J M, Moores B A,
CrossRef
Google scholar
|
[140] |
Palko J W, Lee H, Zhang C,
CrossRef
Google scholar
|
[141] |
Tsao J Y, Chowdhury S, Hollis M A,
CrossRef
Google scholar
|
[142] |
Kasu M, Ueda K, Ye H,
CrossRef
Google scholar
|
[143] |
Pomeroya J, Bernardonia M, Saruaa A,
|
[144] |
Qi Z N, Zheng Y T, Wei J J,
CrossRef
Google scholar
|
[145] |
Morelli D T, Beetz C P, Perry T A. Thermal conductivity of synthetic diamond films. Journal of Applied Physics, 1988, 64(6): 3063–3066
CrossRef
Google scholar
|
[146] |
Wilks J, Wilks E. Properties and Applications of Diamond. Oxford, UK: Butterworth-Heinemann, 1991
|
[147] |
Sood A, Cho J, Hobart K D,
CrossRef
Google scholar
|
[148] |
Anaya J, Bai T, Wang Y,
CrossRef
Google scholar
|
[149] |
Faili F, Huang W, Calvo J,
|
[150] |
Slack G A. Thermal conductivity of pure and impure silicon, silicon carbide, and diamond. Journal of Applied Physics, 1964, 35(12): 3460–3466
CrossRef
Google scholar
|
[151] |
Yue D H, Gao Y, Zhao L,
CrossRef
Google scholar
|
[152] |
Katcho N A, Carrete J, Li W,
CrossRef
Google scholar
|
[153] |
Inyushkin A V, Taldenkov A N, Ralchenko V G,
CrossRef
Google scholar
|
[154] |
Sukhadolau A V, Ivakin E V, Ralchenko V G,
CrossRef
Google scholar
|
[155] |
Worner E, Pleuler E, Wild C,
CrossRef
Google scholar
|
[156] |
Verhoeven H, Flöter A, Reiß H,
CrossRef
Google scholar
|
[157] |
Morelli D T, Hartnett T M, Robinson C J. Phonon-defect scattering in high thermal conductivity diamond films. Applied Physics Letters, 1991, 59(17): 2112–2114
CrossRef
Google scholar
|
[158] |
Faili F, Palmer N, Oh S,
|
[159] |
Graebner J E, Jin S, Kammlott G W,
CrossRef
Google scholar
|
[160] |
Simon R B, Anaya J, Faili F,
CrossRef
Google scholar
|
[161] |
Sood A, Cheaito R, Bai T,
CrossRef
Google scholar
|
[162] |
Twitchen D J, Pickles C S J, Coe S E,
CrossRef
Google scholar
|
[163] |
Khomich A V, Ralchenko V G, Vlasov A V,
CrossRef
Google scholar
|
[164] |
Friel I, Geoghegan S L, Twitchen D J,
CrossRef
Google scholar
|
[165] |
Huszka G, Malpiece N, Naamoun M,
CrossRef
Google scholar
|
[166] |
Friel I. Optical quality diamond grown by chemical vapor deposition. In: Mildren R, Rabeau J, eds. Optical Engineering of Diamond. Wiley-VCH, 2013
|
[167] |
Dodson J M, Brandon J R, Dhillon H K,
CrossRef
Google scholar
|
[168] |
Bennett A M, Wickham B J, Dhillon H K,
CrossRef
Google scholar
|
[169] |
Liu H Y, Reilly S, Herrnsdorf J,
CrossRef
Google scholar
|
[170] |
Parrotta D C, Kemp A J, Dawson M D,
CrossRef
Google scholar
|
[171] |
McKay A, Kitzler O, Mildren R P. Simultaneous brightness enhancement and wavelength conversion to the eye-safe region in a high-power diamond Raman laser. Laser & Photonics Reviews, 2014, 8(3): L37–L41
CrossRef
Google scholar
|
[172] |
Desjardins K, Pomorski M, Morse J. Ultra-thin optical grade scCVD diamond as X-ray beam position monitor. Journal of Synchrotron Radiation, 2014, 21(6): 1217–1223
CrossRef
Google scholar
|
[173] |
Lang A R, Makepeace A P W, Moore M,
CrossRef
Google scholar
|
[174] |
Bennett A. Diamond — a laser engineer’s best friend. Optik & Photonik, 2014, 9(4): 49–52
CrossRef
Google scholar
|
[175] |
Pickles C S J, Madgwick T D, Sussmann R S,
CrossRef
Google scholar
|
[176] |
Woerner E, Wild C, Mueller-Sebert W,
CrossRef
Google scholar
|
[177] |
Yang J X, Duan X F, Lu F X,
CrossRef
Google scholar
|
[178] |
Meykens K, Haenen K, Nesla’dek M,
CrossRef
Google scholar
|
[179] |
Karlsson M, Nikolajeff F. Diamond micro-optics: microlenses and antireflection structured surfaces for the infrared spectral region. Optics Express, 2003, 11(5): 502–507
CrossRef
Google scholar
|
[180] |
Yurov V Y, Bushuev E V, Popovich A F,
CrossRef
Google scholar
|
[181] |
Yamamoto K, Iwasaki H, Tsuji S,
|
[182] |
Zheng Y T, Zhang R, Chen X D,
CrossRef
Google scholar
|
[183] |
Garin B M, Parshin V V, Myasnikova S E,
CrossRef
Google scholar
|
[184] |
Yamada H, Meier A, Mazzocchi F,
CrossRef
Google scholar
|
[185] |
Liu Y, Ding M, Su J,
CrossRef
Google scholar
|
[186] |
Lin C N, Lu Y J, Yang X,
CrossRef
Google scholar
|
[187] |
Lu Y J, Lin C N, Shan C X. Optoelectronic diamond: growth, properties, and photodetection applications. Advanced Optical Materials, 2018, 6(20): 1800359
CrossRef
Google scholar
|
[188] |
Mamin R F, Inushima T. Conductivity in boron-doped diamond. Physical Review B, 2001, 63(3): 033201
CrossRef
Google scholar
|
[189] |
Geis M W, Wade T C, Wuorio C H,
CrossRef
Google scholar
|
[190] |
Bogdanov S A, Gorbachev A M, Radishev D B,
|
[191] |
Kawarada H. Hydrogen-terminated diamond surfaces and interfaces. Surface Science Reports, 1996, 26(7): 205–259
CrossRef
Google scholar
|
[192] |
Pakes C I, Garrido J A, Kawarada H. Diamond surface conductivity: properties, devices, and sensors. MRS Bulletin, 2014, 39(6): 542–548
CrossRef
Google scholar
|
[193] |
Prins J F. n-Type semiconducting diamond by means of oxygen-ion implantation. Physical Review B, 2000, 61(11): 7191–7194
CrossRef
Google scholar
|
[194] |
Stenger I, Pinault-Thaury M A, Kociniewski T,
CrossRef
Google scholar
|
[195] |
Pinault-Thaury M A, Stenger I, Gillet R,
CrossRef
Google scholar
|
[196] |
Goss J P, Briddon P R, Jones R,
CrossRef
Google scholar
|
[197] |
Sakaguchi I, Gamo M N, Kikuchi Y,
CrossRef
Google scholar
|
[198] |
Tang L, Yue R, Wang Y. N-type B–S co-doping and S doping in diamond from first principles. Carbon, 2018, 130: 458–465
CrossRef
Google scholar
|
[199] |
Lombardi E B, Mainwood A, Osuch K. Interaction of hydrogen with boron, phosphorus, and sulfur in diamond. Physical Review B, 2004, 70(20): 205201
CrossRef
Google scholar
|
[200] |
Goss J P, Briddon P R, Shaw M J. Density functional simulations of silicon-containing point defects in diamond. Physical Review B, 2007, 76(7): 075204
CrossRef
Google scholar
|
[201] |
Chernyshev V A, Meijer J, Grambole D,
CrossRef
Google scholar
|
[202] |
Lombardi E B, Mainwood A, Osuch K. Ab initio study of lithium and sodium in diamond. Physical Review B, 2007, 76(15): 155203
CrossRef
Google scholar
|
[203] |
Sque S J, Jones R, Goss J P,
CrossRef
Google scholar
|
[204] |
Masante C, Pernot J, Marechal A,
CrossRef
Google scholar
|
[205] |
Lloret F, Eon D, Bustarret E,
CrossRef
Google scholar
|
[206] |
Achard J, Tallaire A. Diamond wafer technologies for semiconductor device applications. In: Koizumi S, Umezawa H, Pernot J,
|
[207] |
Pinault-Thaury M A, Temgoua S, Gillet R,
CrossRef
Google scholar
|
[208] |
Khramtsov I A, Fedyanin D Y. Superinjection in diamond p-i-n diodes: bright single-photon electroluminescence of color centers beyond the doping limit. Physical Review Applied, 2019, 12(2): 024013
CrossRef
Google scholar
|
[209] |
Udvarhelyi P, Shkolnikov V O, Gali A,
CrossRef
Google scholar
|
[210] |
Pernot J, Volpe P N, Omnès F,
CrossRef
Google scholar
|
[211] |
Yamasaki S, Gheeraert E, Koide Y. Doping and interface of homoepitaxial diamond for electronic applications. MRS Bulletin, 2014, 39(6): 499–503
CrossRef
Google scholar
|
[212] |
Jena D, Mishra U K. Effect of scattering by strain fields surrounding edge dislocations on electron transport in two-dimensional electron gases. Applied Physics Letters, 2002, 80(1): 64–66
CrossRef
Google scholar
|
[213] |
Klein O, Mayr M, Fischer M,
CrossRef
Google scholar
|
[214] |
Schreck M, Ščajev P, Träger M,
CrossRef
Google scholar
|
[215] |
Nebel C E, Munz J, Stutzmann M,
CrossRef
Google scholar
|
[216] |
Secroun A, Brinza O, Tardieu A,
CrossRef
Google scholar
|
[217] |
Reznik A, Uzan-Saguy C, Kalish R. Effects of point defects on the electrical properties of doped diamond. Diamond and Related Materials, 2000, 9(3–6): 1051–1056
CrossRef
Google scholar
|
[218] |
Kalish R, Uzan-Saguy C, Philosoph B,
CrossRef
Google scholar
|
[219] |
Lohstroh A, Sellin P J, Wang S G,
CrossRef
Google scholar
|
[220] |
Umezawa H. Recent advances in diamond power semiconductor devices. Materials Science in Semiconductor Processing, 2018, 78: 147–156
CrossRef
Google scholar
|
[221] |
Umezawa H, Saito T, Tokuda N,
CrossRef
Google scholar
|
[222] |
Kasu M, Kubovic M, Aleksov A,
CrossRef
Google scholar
|
[223] |
Ristein J, Riedel M, Maier F,
CrossRef
Google scholar
|
[224] |
Pan L S, Kania D R, Han S,
CrossRef
Google scholar
|
[225] |
Mokuno Y, Kato Y, Tsubouchi N,
CrossRef
Google scholar
|
[226] |
Boussadi A, Tallaire A, Kasu M,
CrossRef
Google scholar
|
[227] |
Martineau P M, Gaukroger M P, Guy K B,
CrossRef
Google scholar
|
[228] |
Tallaire A, Brinza O, Mille V,
CrossRef
Google scholar
|
[229] |
Markham M L, Dodson J M, Scarsbrook G A,
CrossRef
Google scholar
|
[230] |
Balducci A, Marinelli M, Milani E,
CrossRef
Google scholar
|
[231] |
Schreck M, Gsell S, Brescia R,
CrossRef
Google scholar
|
[232] |
Yamada H, Chayahara A, Mokuno Y,
CrossRef
Google scholar
|
[233] |
Naamoun M, Tallaire A, Doppelt P,
CrossRef
Google scholar
|
[234] |
Ichikawa K, Kurone K, Kodama H,
CrossRef
Google scholar
|
[235] |
Aida H, Ikejiri K, Kim S,
CrossRef
Google scholar
|
[236] |
Service R F. Diamond feats give quantum computing a solid boost. Science, 2010, 329(5992): 616–617
CrossRef
Google scholar
|
[237] |
Dong Y, Xu J Y, Zhang S C,
CrossRef
Google scholar
|
[238] |
Orwa J O, Santori C, Fu K M C,
CrossRef
Google scholar
|
[239] |
Smits J, Damron J T, Kehayias P,
CrossRef
Google scholar
|
[240] |
Hamlin J J, Zhou B B. Extreme diamond-based quantum sensors. Science, 2019, 366(6471): 1312–1313
CrossRef
Google scholar
|
[241] |
Bucher D B, Craik D P L A, Backlund M P,
CrossRef
Google scholar
|
[242] |
Sangtawesin S, Brundage T O, Atkins Z J,
CrossRef
Google scholar
|
[243] |
Doherty M W, Manson N B, Delaney P,
CrossRef
Google scholar
|
[244] |
Razinkovas L, Doherty M W, Manson N B,
CrossRef
Google scholar
|
[245] |
Siyushev P, Nesladek M, Bourgeois E,
CrossRef
Google scholar
|
[246] |
Hensen B, Bernien H, Dre’au A E,
CrossRef
Google scholar
|
[247] |
Shi F Z, Zhang Q, Wang P F,
CrossRef
Google scholar
|
[248] |
Bradley C E, Randall J, Abobeih M H,
CrossRef
Google scholar
|
[249] |
Li R, Kong F, Zhao P J,
CrossRef
Google scholar
|
[250] |
Atatüre M, Englund D, Vamivakas N,
CrossRef
Google scholar
|
[251] |
Bradac C, Gao W B, Forneris J,
CrossRef
Google scholar
|
[252] |
Zaitsev A M. Vibronic spectra of impurity-related optical centers in diamond. Physical Review B, 2000, 61(19): 12909–12922
CrossRef
Google scholar
|
[253] |
Kennedy T A, Colton J S, Butler J E,
CrossRef
Google scholar
|
[254] |
Gaebel T, Domhan M, Popa I,
CrossRef
Google scholar
|
[255] |
Balasubramanian G, Neumann P, Twitchen D,
CrossRef
Google scholar
|
[256] |
Dolde F, Jakobi I, Naydenov B,
CrossRef
Google scholar
|
[257] |
Aharonovich I, Greentree A D, Prawer S. Diamond photonics. Nature Photonics, 2011, 5(7): 397–405
CrossRef
Google scholar
|
[258] |
Teraji T. Ultrapure homoepitaxial diamond films grown by chemical vapor deposition for quantum device application. Semiconductors and Semimetals, 2020, 103: 37–55
CrossRef
Google scholar
|
[259] |
Achard J, Jacques V, Tallaire A. Chemical vapour deposition diamond single crystals with nitrogen-vacancy centres: a review of material synthesis and technology for quantum sensing applications. Journal of Physics D: Applied Physics, 2020, 53(31): 313001
CrossRef
Google scholar
|
[260] |
Lenzini F, Gruhler N, Walter N,
CrossRef
Google scholar
|
[261] |
Faraon A, Barclay P E, Santori C,
CrossRef
Google scholar
|
[262] |
Hausmann B J M, Shields B J, Quan Q,
CrossRef
Google scholar
|
[263] |
Riedel D, Söllner I, Shields B J,
CrossRef
Google scholar
|
[264] |
Hoinkis M, Weber E R, Landstrass M I,
CrossRef
Google scholar
|
[265] |
Lühmann T, Raatz N, John R,
CrossRef
Google scholar
|
[266] |
Yamamoto T, Umeda T, Watanabe K,
CrossRef
Google scholar
|
[267] |
Lobaev M A, Gorbachev A M, Bogdanov S A,
CrossRef
Google scholar
|
[268] |
Mi S, Kiss M, Graziosi T,
CrossRef
Google scholar
|
[269] |
Bogdanov S A, Gorbachev A M, Radishev D B,
CrossRef
Google scholar
|
[270] |
Stephen C J, Green B L, Lekhai Y N D,
CrossRef
Google scholar
|
[271] |
Achard J, Silva F, Brinza O,
CrossRef
Google scholar
|
[272] |
Kalish R. Ion implantation in diamond for quantum information processing (QIP): doping and damaging. In: Prawer S, Aharonovich I, eds. Quantum Information Processing with Diamond: Principles and Applications. 1st ed. Cambridge, UK: Woodhead Publishing, 2014, 36–67
|
[273] |
Rabeau J R, Reichart P, Tamanyan G,
CrossRef
Google scholar
|
[274] |
Meijer J, Burchard B, Domhan M,
CrossRef
Google scholar
|
[275] |
Lühmann T, John R, Wunderlich R,
CrossRef
Google scholar
|
[276] |
de Oliveira F F, Antonov D, Wang Y,
CrossRef
Google scholar
|
[277] |
Osterkamp C, Scharpf J, Pezzagna S,
CrossRef
Google scholar
|
[278] |
Reichart P, Datzmann G, Hauptner A,
CrossRef
Google scholar
|
[279] |
Czelej K, Zemła M R, Spiewak P,
CrossRef
Google scholar
|
[280] |
Herbschleb E D, Kato H, Maruyama Y,
CrossRef
Google scholar
|
[281] |
Dreau A, Maze J R, Lesik M,
CrossRef
Google scholar
|
[282] |
Mizuochi N, Neumann P, Rempp F,
CrossRef
Google scholar
|
[283] |
Zheng Y T, Li C M, Liu J L,
CrossRef
Google scholar
|
[284] |
Markham M, Twitchen D. The diamond quantum revolution. Physics World, 2020, 33(4): 39–43
CrossRef
Google scholar
|
/
〈 | 〉 |