Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance
Haibo REN, Huaipeng WENG, Pengfei ZHAO, Ruzhong ZUO, Xiaojing LU, Jiarui HUANG
Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance
A sea-urchin-like CuO/ZnO porous nanostructure is obtained via a simple solution method followed by a calcination process. There are abundant pores among the resulting nanowires due to the thermal decomposition of copper–zinc hydroxide carbonate. The specific surface area of the as-prepared CuO/ZnO sample is determined as 31.3 m2·g−1. The gas-sensing performance of the sea-urchin-like CuO/ZnO sensor is studied by exposure to volatile organic compound (VOC) vapors. With contrast to a pure porous sea-urchin-like ZnO sensor, the sea-urchin-like CuO/ZnO sensor shows superior gas-sensing behavior for acetone, formaldehyde, methanol, toluene, isopropanol and ethanol. It exhibits a high response of 52.6–100 ppm acetone vapor, with short response/recovery time. This superior sensing behavior is mainly ascribed to the porous nanowire-assembled structure with abundant p–n heterojunctions.
copper oxide / zinc oxide / copper--zinc hydroxide carbonate / volatile organic compound / gas sensor
[1] |
Qin W B, Yuan Z Y, Gao H L,
CrossRef
Google scholar
|
[2] |
Han Z J, Qi Y, Yang Z Y,
CrossRef
Google scholar
|
[3] |
Ge W, Zhang X H, Ge X T,
CrossRef
Google scholar
|
[4] |
Zhu L, Zeng W, Li Y Q. A non-oxygen adsorption mechanism for hydrogen detection of nanostructured SnO2 based sensors. Materials Research Bulletin, 2019, 109: 108–116
CrossRef
Google scholar
|
[5] |
Kim K, Choi P G, Itoh T,
CrossRef
Pubmed
Google scholar
|
[6] |
Zhang D Z, Mi Q, Wang D Y,
CrossRef
Google scholar
|
[7] |
Wang M S, Wang Y W, Li X J,
CrossRef
Google scholar
|
[8] |
Liang F X, Liang L, Zhao X Y,
CrossRef
Google scholar
|
[9] |
Simonetti E A N, de Oliveira T C, Machado D E D,
CrossRef
Google scholar
|
[10] |
Kang Y L, Yu F, Zhang L,
CrossRef
Google scholar
|
[11] |
Li C C, Zhou H G, Yang S C,
CrossRef
Google scholar
|
[12] |
Gupta S K, Mohan S, Valdez M,
CrossRef
Google scholar
|
[13] |
Li Q C, Chen D, Miao J M,
CrossRef
Google scholar
|
[14] |
Li J P, Yang Y F, Wang Q,
CrossRef
Google scholar
|
[15] |
Wang H T, Li Y Y, Wang C C,
CrossRef
Google scholar
|
[16] |
Wang J, Hu C Y, Xia Y,
CrossRef
Google scholar
|
[17] |
Wang S, Jia F, Wang X,
CrossRef
Pubmed
Google scholar
|
[18] |
Gong Y, Wu X F, Chen J Y,
CrossRef
Google scholar
|
[19] |
Liu J J, Zhang L Y, Fan J J,
CrossRef
Google scholar
|
[20] |
Nakate U T, Ahmad R, Patil P,
CrossRef
Google scholar
|
[21] |
Liang Y C, Chang Y C. The effect of Ni content on gas-sensing behaviors of ZnO–NiO p–n composite thin films grown through radio-frequency cosputtering of ceramic ZnO and NiO targets. CrystEngComm, 2020, 22(13): 2315–2326
CrossRef
Google scholar
|
[22] |
Hung P T, Hoat P D, Hien V X,
CrossRef
Pubmed
Google scholar
|
[23] |
Min S K, Kim H, Noh Y,
CrossRef
Google scholar
|
[24] |
Nithya S, Sharan R, Roy M,
CrossRef
Google scholar
|
[25] |
Kulkarni S, Ghosh R. A simple approach for sensing and accurate prediction of multiple organic vapors by sensors based on CuO nanowires. Sensors and Actuators B: Chemical, 2021, 335: 129701
CrossRef
Google scholar
|
[26] |
Nanda A, Singh V, Jha R K,
CrossRef
Pubmed
Google scholar
|
[27] |
Wang X, Li S H, Xie L L,
CrossRef
Google scholar
|
[28] |
Mariammal R N, Ramachandran K. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Materials Research Bulletin, 2018, 100: 420–428
CrossRef
Google scholar
|
[29] |
Na H B, Zhang X F, Zhang M,
CrossRef
Google scholar
|
[30] |
Lee J E, Lim C K, Park H J,
CrossRef
Pubmed
Google scholar
|
[31] |
Navale Y H, Navale S T, Stadler F J,
CrossRef
Google scholar
|
[32] |
Huang J R, Dai Y J, Gu C P,
CrossRef
Google scholar
|
[33] |
Xian K C, Nie B, Li Z G,
CrossRef
Google scholar
|
[34] |
Chen C S, Liu X Y, Fang Q,
CrossRef
Google scholar
|
[35] |
Zhang X Y, He X S, Kang Z W,
CrossRef
Google scholar
|
[36] |
Zhao S, Shen Y B, Hao F L,
CrossRef
Google scholar
|
[37] |
Sahu K, Bisht A, Kuriakose S,
CrossRef
Google scholar
|
[38] |
Qin C, Wang Y, Gong Y X,
CrossRef
Google scholar
|
[39] |
Wang C, Zhu J W, Liang S M,
CrossRef
Google scholar
|
[40] |
Li H J, Zhang N, Zhao X L,
CrossRef
Google scholar
|
[41] |
Yin M L, Wang F, Fan H B,
CrossRef
Google scholar
|
[42] |
Yang C, Cao X, Wang S,
CrossRef
Google scholar
|
[43] |
Liu X, Sun Y, Yu M,
CrossRef
Google scholar
|
[44] |
Zhang Y B, Yin J, Li L,
CrossRef
Google scholar
|
[45] |
Yuan Z Y, Yang C, Meng F L. Strategies for improving the sensing performance of semiconductor gas sensors for high-performance formaldehyde detection: a review. Chemosensors, 2021, 9(7): 179
CrossRef
Google scholar
|
[46] |
Han M A, Kim H J, Lee H C,
CrossRef
Google scholar
|
[47] |
Ren H B, Zhao W, Wang L Y,
CrossRef
Google scholar
|
[48] |
Shao S F, Chen X, Chen Y Y,
CrossRef
Google scholar
|
[49] |
Drmosh Q A, Al Wajih Y A, Alade I O,
CrossRef
Google scholar
|
[50] |
Lin T, Lv X, Hu Z,
CrossRef
Pubmed
Google scholar
|
[51] |
Samadi S, Nouroozshad M, Zakaria S A. ZnO@SiO2/rGO core/shell nanocomposite: a superior sensitive, selective and reproducible performance for 1-propanol gas sensor at room temperature. Materials Chemistry and Physics, 2021, 271: 124884
CrossRef
Google scholar
|
[52] |
Han C H, Li X W, Shao C L,
CrossRef
Google scholar
|
[53] |
Navale Y H, Navale S T, Stadler F J,
CrossRef
Google scholar
|
[54] |
Mariammal R N, Ramachandran K. Study on gas sensing mechanism in p-CuO/n-ZnO heterojunction sensor. Materials Research Bulletin, 2018, 100: 420–428
CrossRef
Google scholar
|
/
〈 | 〉 |