Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance
Haibo REN , Huaipeng WENG , Pengfei ZHAO , Ruzhong ZUO , Xiaojing LU , Jiarui HUANG
Front. Mater. Sci. ›› 2022, Vol. 16 ›› Issue (1) : 220583
Preparation of porous sea-urchin-like CuO/ZnO composite nanostructure consisting of numerous nanowires with improved gas-sensing performance
A sea-urchin-like CuO/ZnO porous nanostructure is obtained via a simple solution method followed by a calcination process. There are abundant pores among the resulting nanowires due to the thermal decomposition of copper–zinc hydroxide carbonate. The specific surface area of the as-prepared CuO/ZnO sample is determined as 31.3 m2·g−1. The gas-sensing performance of the sea-urchin-like CuO/ZnO sensor is studied by exposure to volatile organic compound (VOC) vapors. With contrast to a pure porous sea-urchin-like ZnO sensor, the sea-urchin-like CuO/ZnO sensor shows superior gas-sensing behavior for acetone, formaldehyde, methanol, toluene, isopropanol and ethanol. It exhibits a high response of 52.6–100 ppm acetone vapor, with short response/recovery time. This superior sensing behavior is mainly ascribed to the porous nanowire-assembled structure with abundant p–n heterojunctions.
copper oxide / zinc oxide / copper--zinc hydroxide carbonate / volatile organic compound / gas sensor
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
Higher Education Press
/
| 〈 |
|
〉 |